Skip to main content
Log in

ZIF-8@ZIF-67 Derived Co/NPHC Catalysts for Efficient and Selective Hydrogenation of Nitroarenes

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Constructing nitrogen-doped porous hollow carbon with loading of non-precious metal for highly efficient hydrogenation of nitroarenes is desirable but challenging. Herein we report a facile self-sacrificing template strategy to prepare Co embedded in nitrogen-doped porous hollow carbon (Co/NPHC) from pyrolysis of well-designed core–shell ZIF-8@ZIF-67. The pyrolysis of ZIF-8@ZIF-67 at 900 °C endowed as-resultant Co/NPHC-900 with high specific surface area, hollow structure and hierarchical mesopore, favoring the dispersion of Co species and then generating abundant Co-Nx active sites, also promoting mass transport of substrates and products. As a result, the Co/NPHC-900 catalyst showed excellent activity and extraordinary selectivity in the hydrogenation of nitrobenzene, which far surpassed Co/NPC-900 and ZnCo/NPC-900 catalysts derived from sole ZIF-67 and ZnCo-BMZIF, respectively. It also had a broad substrate scope and good reusability. Furthermore, characterization and control experiments showed that Co single atoms should be catalytic active sites rather than Co nanoparticles for Co/NPHC-900. Our work provides a good candidate for the replacement of precious metal catalysts for selective hydrogenations as well as contributes to the rational design of high-performance single-atom catalysts.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhao JB, Jin RC (2018) Heterogeneous catalysis by gold and gold-based bimetal nanoclusters. Nano Today 18:86–102

    Article  CAS  Google Scholar 

  2. Blaser H, Steiner H, Studer M (2009) Selective catalytic hydrogenation of functionalized nitroarenes: an update. ChemCatChem 1:210–221

    Article  CAS  Google Scholar 

  3. Baumeister P, Blaser H, Scherrer W, Guisnet M, Barrault J, Bouchoule C, Duprez D, Pérot G, Maurel R, Montassier C (1991) Chemoselective hydrogenation of aromatic chloronitro compounds with amidine modified nickel catalysts. Stud Surf Sci Catal 59:321–328

    Article  CAS  Google Scholar 

  4. Wei HS, Liu XY, Wang AQ, Zhang LL, Qiao BT, Yang XF, Huang YQ, Miao S, Liu JY, Zhang T (2014) FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nat Commun 5:5634

    Article  CAS  PubMed  Google Scholar 

  5. Song JJ, Huang ZF, Pan L, Li K, Zhang XW, Wang L, Zou JJ (2018) Review on selective hydrogenation of nitroarene by catalytic, photocatalytic and electrocatalytic reactions. Appl Catal B 227:386–408

    Article  CAS  Google Scholar 

  6. Zhao JB, Ge LM, Yuan HF, Liu YF, Gui YH, Zhang BD, Zhou LM, Fang SM (2019) Heterogeneous gold catalysts for selective hydrogenation: from nanoparticles to atomically precise nanoclusters. Nanoscale 11:11429–11436

    Article  CAS  PubMed  Google Scholar 

  7. Corma A, Serna P (2006) Chemoselective hydrogenation of nitro compounds with supported gold catalysts. Science 313:332–334

    Article  CAS  PubMed  Google Scholar 

  8. Zhao JB, Li Q, Zhuang SL, Song YB, Morris DJ, Zhou M, Wu ZK, Zhang P, Jin RC (2018) Reversible control of chemoselectivity in Au38(SR)24 nanocluster-catalyzed transfer hydrogenation of nitrobenzaldehyde derivatives. J Phys Chem Lett 9:7173–7179

    Article  CAS  PubMed  Google Scholar 

  9. He L, Wang LC, Sun H, Ni J, Cao Y, He HY, Fan KN (2009) Efficient and selective room-temperature gold-catalyzed reduction of nitro compounds with CO and H2O as the hydrogen source. Angew Chem Int Ed 48:9538–9541

    Article  CAS  Google Scholar 

  10. Lin L, Yao S, Gao R, Liang X, Yu Q, Deng Y, Liu J, Peng M, Jiang Z, Li S, Li YW, Wen XW, Zhou W, Ma D (2019) A highly CO-tolerant atomically dispersed Pt catalyst for chemoselective hydrogenation. Nat Nanotechnol 14:354–361

    Article  CAS  PubMed  Google Scholar 

  11. Lu CS, Zhu QW, Zhang XJ, Ji HK, Zhou YB, Wang H, Liu QQ, Nie JJ, Han WF, Li XN (2019) Decoration of Pd nanoparticles with N and S doped carbon quantum dots as a robust catalyst for the chemoselective hydrogenation reaction. ACS Sustain Chem Eng 7:8542–8553

    Article  CAS  Google Scholar 

  12. Guo M, Li H, Ren YQ, Ren XM, Yang QH, Li C (2018) Improving catalytic hydrogenation performance of Pd nanoparticles by electronic modulation using phosphine ligands. ACS Catal 8:6476–6485

    Article  CAS  Google Scholar 

  13. Berguerand C, Yarulin A, Cárdenas-Lizana F, Wärnå J, Sulman E, Murzin DY, Kiwi-Minsker L (2015) Chemoselective liquid phase hydrogenation of 3-nitrostyrene over Pt nanoparticles: synergy with ZnO support. Ind Eng Chem Res 54:8659–8669

    Article  CAS  Google Scholar 

  14. Zhang QS, Bu JH, Wang JD, Sun CY, Zhao DY, Sheng GZ, Xie XW, Sun M, Yu L (2020) Highly efficient hydrogenation of nitrobenzene to aniline over Pt/CeO2 catalysts: the shape effect of the support and key role of additional Ce3+ sites. ACS Catal 10:10350–10363

    Article  CAS  Google Scholar 

  15. Qin RX, Zhou LY, Liu PX, Gong Y, Liu KL, Xu CF, Zhao Y, Gu L, Fu G, Zheng NF (2020) Alkali ions secure hydrides for catalytic hydrogenation. Nat Catal 3:703–709

    Article  CAS  Google Scholar 

  16. Deng X, Qin B, Liu RZ, Qin XT, Dai WL, Wu GJ, Guan NJ, Ma D, Li LD (2021) Zeolite-Encaged Isolated Platinum Ions Enable Heterolytic Dihydrogen Activation and Selective Hydrogenations. J Am Chem Soc 143:20898–20906

    Article  CAS  PubMed  Google Scholar 

  17. Fu T, Wang M, Cai WM, Cui YM, Gao F, Peng LM, Chen W, Ding WP (2014) Acid resistant catalysis without use of noble metals: carbon nitride with underlying nickel. ACS Catal 4:2536–2543

    Article  CAS  Google Scholar 

  18. Huang L, Lv Y, Liu SH, Cui HS, Zhao ZY, Zhao H, Liu PL, Xiong W, Hao F, Luo HA (2020) Non-noble metal Ni nanoparticles supported on highly dispersed TiO2-modified activated carbon as an efficient and recyclable catalyst for the hydrogenation of halogenated aromatic nitro compounds under mild conditions. Ind Eng Chem Res 59:1422–1435

    Article  CAS  Google Scholar 

  19. Jagadeesh RV, Surkus A, Junge H, Pohl M, Radnik J, Rabeah J, Huan H, Schünemann V, Brückner A, Beller M (2013) Nanoscale Fe2O3-based catalysts for selective hydrogenation of nitroarenes to anilines. Science 342:1073–1076

    Article  CAS  PubMed  Google Scholar 

  20. Westerhaus FA, Jagadeesh RV, Wienhöfer G, Pohl M, Radnik J, Surkus A, Rabeah J, Junge K, Junge H, Nielsen M, Brückner A, Beller M (2013) Heterogenized cobalt oxide catalysts for nitroarene reduction by pyrolysis of molecularly defined complexes. Nat Chem 5:537–543

    Article  CAS  PubMed  Google Scholar 

  21. Liu LC, Concepción P, Corma A (2016) Non-noble metal catalysts for hydrogenation: a facile method for preparing Co nanoparticles covered with thin layered carbon. J Catal 340:1–9

    Article  CAS  Google Scholar 

  22. Wei ZZ, Wang J, Mao SJ, Su DF, Jin HY, Wang YH, Xu F, Li HR, Wang Y (2015) In situ-generated Co0-Co3O4/N-doped carbon nanotubes hybrids as efficient and chemoselective catalysts for hydrogenation of nitroarenes. ACS Catal 5:4783–4789

    Article  CAS  Google Scholar 

  23. Formenti D, Ferretti F, Scharnagl FK, Beller M (2019) Reduction of nitro compounds using 3d-non-noble metal catalysts. Chem Rev 119:2611–2680

    Article  CAS  PubMed  Google Scholar 

  24. Cao YL, Liu KK, Wu C, Zhang HP, Zhang QY (2020) In situ-formed cobalt embedded into N-doped carbon as highly efficient and selective catalysts for the hydrogenation of halogenated nitrobenzenes under mildconditions. Appl Catal A Gen 592:117434

    Article  CAS  Google Scholar 

  25. Shen ZY, Hong LR, Zheng BS, Wang GY, Zhang BB, Wang ZX, Zhan FY, Shen SH, Yun RR (2021) Highly efficient and chemoselective hydrogenation of nitro compounds into amines by nitrogen-doped porous carbon-supported Co/Ni bimetallic nanoparticles. Inorg Chem 60:16834–16839

    Article  CAS  PubMed  Google Scholar 

  26. Wang HF, Chen LY, Pang H, Kaskel S, Xu Q (2020) MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chem Soc Rev 49:1414–1448

    Article  CAS  PubMed  Google Scholar 

  27. Lu XF, Fang YJ, Luan DY, Lou XW (2021) Metal-organic frameworks derived functional materials for electrochemical energy storage and conversion: a mini review. Nano Lett 21:1555–1565

    Article  CAS  PubMed  Google Scholar 

  28. Xiong Y, Dong JC, Huang ZQ, Xin PY, Chen WX, Wang Y, Li Z, Jin Z, Xing W, Zhuang ZB, Ye JY, Wei X, Cao R, Gu L, Sun SG, Zhuang L, Chen XQ, Yang H, Chen C, Peng Q, Chang CR, Wang DS, Li YD (2020) Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nat Nanotechnol 15:390–397

    Article  CAS  PubMed  Google Scholar 

  29. Shen K, Chen XD, Chen JY, Li YW (2016) Development of MOF-derived carbon-based nanomaterials for efficient catalysis. ACS Catal 6:5887–5903

    Article  CAS  Google Scholar 

  30. Wang X, Li YW (2016) Chemoselective hydrogenation of functionalized nitroarenes using MOF-derived Co-based catalysts. J Mol Catal A 420:56–65

    Article  CAS  Google Scholar 

  31. Sun XH, Olivos-Suarez AI, Oar-Arteta L, Rozhko E, Osadchii D, Bavykina A, Kapteijn F, Gascon J (2017) Metal-organic framework mediated cobalt/nitrogen-doped carbon hybrids as efficient and chemoselective catalysts for the hydrogenation of nitroarenes. ChemCatChem 9:1854–1862

    Article  CAS  Google Scholar 

  32. Dai YY, Li XQ, Wang LK, Xu XS (2021) Highly efficient hydrogenation reduction of aromatic nitro compounds using MOF derivative Co-N/C catalyst. New J Chem 45:22908–22914

    Article  CAS  Google Scholar 

  33. Wang H, Yin FX, Li GR, Chen BH, Wang ZQ (2014) Preparation, Characterization and Bifunctional Catalytic Properties of MOF (Fe/Co) Catalyst for Oxygen Reduction/Evolution Reactions in Alkaline Electrolyte. Int J Hydrogen Energy 39:16179–16186

    Article  CAS  Google Scholar 

  34. Liédana N, Galve A, Rubio C, Téllez C, Coronas J (2012) CAF@ZIF-8: one-step encapsulation of caffeine in MOF. ACS Appl Mater Interfaces 4:5016–5021

    Article  PubMed  Google Scholar 

  35. Park KS, Ni Z, Côte AP, Choi JY, Huang RD, Uribe-Romo FJ, Chae HK, O’Keeffe M, Yaghi OM, (2006) Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Natl Acad Sci U S A 103:10186–10191

    Article  CAS  Google Scholar 

  36. Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, O’Keeffe M, Yaghi OM (2008) High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319:939–943

    Article  CAS  PubMed  Google Scholar 

  37. Tang J, Salunkhe RR, Liu J, Torad NL, Imura M, Furukawa S, Yamauchi Y (2015) Thermal conversion of core-shell metal-organic frameworks: a new method for selectively functionalized nanoporous hybrid carbon. J Am Chem Soc 137:1572–1580

    Article  CAS  PubMed  Google Scholar 

  38. Pan Y, Sun KA, Liu SJ, Cao X, Wu KL, Cheong WC, Chen Z, Wang Y, Li Y, Liu YQ, Wang DS, Peng Q, Chen C, Li YD (2018) Core-shell ZIF-8@ZIF-67-Derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting. J Am Chem Soc 140:2610–2618

    Article  CAS  PubMed  Google Scholar 

  39. Yun RR, Hong LR, Ma WJ, Zhang RY, Zhan FY, Duan JG, Zheng BS, Wang SN (2020) Co Nanoparticles encapsulated in nitrogen doped carbon tubes for efficient hydrogenation of quinoline under mild conditions. ChemCatChem 12:129–134

    Article  CAS  Google Scholar 

  40. Xiong W, Zhou SS, Wang LP, Liu Y, Hao F, Liu PL, Luo HA (2020) ZIF-derived Co-based catalysts for efficient hydrogenation of aromatic compounds: the study of the Co-Nx active sites. Ind Eng Chem Res 59:22473–22484

    Article  CAS  Google Scholar 

  41. Zhao JB, Yuan HF, Guang Y, Liu YF, Qin XM, Zheng C, Weng-Chon C, Zhou LM, Fang SM (2022) AuPt bimetallic nanoalloys supported on SBA-15: A superior catalyst for quinoline selective hydrogenation in water. Nano Res 15:1796–1802

    Article  CAS  Google Scholar 

  42. Zhao JB, Yuan HF, Qin XM, Tian K, Liu YF, Wei CZ, Zhang ZQ, Zhou LM, Fang SM (2020) Au nanoparticles confined in SBA-15 as a highly efficient and stable catalyst for hydrogenation of quinoline to 1,2,3,4-tetrahydroquinoline. Catal Lett 150:2841–2849

    Article  CAS  Google Scholar 

  43. Chen SY, Bi FF, Xiang K, Zhang Y, Hao PP, Li MH, Zhao B, Guo XF (2019) Reactive template-derived CoFe/N-doped carbon nanosheets as highly efficient electrocatalysts toward oxygen reduction, oxygen evolution, and hydrogen evolution. ACS Sustain Chem Eng 7:15278–15288

    Article  CAS  Google Scholar 

  44. Gong WB, Lin Y, Chen C, Al-Mamun M, Lu HS, Wang GZ, Zhang HM, Zhao HJ (2019) Nitrogen-doped carbon nanotube confined Co-Nx sites for selective hydrogenation of biomass-derived compounds. Adv Mater 31:180834

    Article  Google Scholar 

  45. He WH, Jiang CH, Wang JB, Lu LH (2014) High-rate oxygen electroreduction over graphitic-N species exposed on 3D hierarchically porous nitrogen-doped carbons. Angew Chem Int Ed 53:9503–9507

    Article  CAS  Google Scholar 

  46. Zhang EH, Xie Y, Ci SQ, Jia JC, Cai PW, Yi LC, Wen ZH (2016) Multifunctional High-Activity and Robust Electrocatalyst Derived from Metal-Organic Frameworks. J Mater Chem A 4:17288–17298

    Article  CAS  Google Scholar 

  47. Han YH, Wang ZY, Xu RR, Zhang W, Chen WX, Zheng LR, Zhang J, Luo J, Wu KL, Zhu YQ, Chen C, Peng Q, Liu Q, Hu P, Wang DS, Li YD (2018) Ordered porous nitrogen-doped carbon matrix with atomically dispersed cobalt sites as an efficient catalyst for dehydrogenation and transfer hydrogenation of N-heterocycles. Angew Chem Int Ed 57:11262–11266

    Article  CAS  Google Scholar 

  48. Li MH, Chen SY, Jiang QK, Chen QL, Wang X, Yan Y, Liu J, Lv CC, Ding WP, Guo XF (2021) Origin of the activity of Co-N-C catalysts for chemoselective hydrogenation of nitroarenes. ACS Catal 11:3026–3039

    Article  CAS  Google Scholar 

  49. Wang HJ, Wang Y, Li YF, Lan XC, Ali B, Wang TF (2020) Highly efficient hydrogenation of nitroarenes by N-doped carbon supported cobalt single-atom catalyst in ethanol/water mixed solvent. ACS Appl Mater Interfaces 12:34021–34031

    Article  CAS  PubMed  Google Scholar 

  50. Li JL, Liu GL, Long XD, Gao G, Wu J, Li FW (2017) Different active sites in a bifunctional Co@N-doped graphene shells based catalyst for the oxidative dehydrogenation and hydrogenation reactions. J Catal 355:53–62

    Article  CAS  Google Scholar 

  51. Luo HH, Wang LY, Shang SS, Li GS, Lv Y, Gao S, Dai W (2020) Cobalt nanoparticles catalyzed widely applicable successive C-C bond cleavage in alcohols to access esters. Angew Chem Int Ed 59:19268–19274

    Article  CAS  Google Scholar 

  52. Liang HW, Brüller S, Dong RH, Zhang J, Feng XL, Müllen K (2015) Molecular metal-Nx centres in porous carbon for electrocatalytic hydrogen evolution. Nat Commun 6:7992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang XR, Liu JY, Liu ZW, Wang WC, Luo J, Han XP, Du XW, Qiao SZ, Jing Y (2018) Identifying the key role of pyridinic-N-Co bonding in synergistic electrocatalysis for reversible ORR/OER. Adv Mater 30:1870164

    Article  Google Scholar 

  54. Zhang J, Zheng C, Zhang M, Qiu Y, Xu Q, Cheong WC, Chen W, Zheng L, Gu L, Hu Z, Wang D, Li Y (2020) Controlling N-doping type in carbon to boost single-atom site Cu catalyzed transfer hydrogenation of quinoline. Nano Res 13:3082–3087

    Article  Google Scholar 

  55. Liu C, Wu Y, Sun K, Fang J, Huang A, Pan Y, Cheong WC, Zhuang Z, Zhuang Z, Yuan Q, Xin HL, Zhang C, Zhang J, Xiao H, Chen C, Li Y (2021) Constructing FeN4/graphitic nitrogen atomic interface for high-efficiency electrochemical CO2 reduction over a broad potential window. Chem 7:1–11

    Article  Google Scholar 

Download references

Acknowledgements

The work was financially supported by the National Natural Science Foundation of China (21576248) and Key scientific research projects of colleges and universities of Henan Province (21A150057).

Funding

Key scientific research projects of colleges and universities of Henan Province, 21A150057, National Natural Science Foundation of China, 21576248

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianbo Zhao or Konglin Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3044 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Yang, W., Yuan, H. et al. ZIF-8@ZIF-67 Derived Co/NPHC Catalysts for Efficient and Selective Hydrogenation of Nitroarenes. Catal Lett 153, 824–835 (2023). https://doi.org/10.1007/s10562-022-04016-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04016-0

Keywords

Navigation