Skip to main content
Log in

N-Arylation Reaction of 2-Amino-N-phenylbenzamide with Phenyl Boronic Acid via Chan–Evans–Lam (CEL) Type Reaction Using Cu@Phen@MGO Catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Cu@Phen@MGO catalyst was synthesized by the functionalization of magnetic graphene oxide (MGO) with phenanthroline type ligand. The catalyst was characterized by several characterization methods and used as an effective magnetic heterogeneous nanocatalyst for the N-arylation of 2-amino-N-phenylbenzamide. Cu@Phen@MGO catalyst showed very good efficiency in base-free Chan–Evans–Lam coupling of arylboronic acid with 2-amino-N-phenylbenzamide at room temperature. The products were obtained in high isolated yields. Easy recoverability of the catalyst by an external magnet, reusability up to six runs without significant loss of activity, and its well stability during the reaction are among the other highlights of this catalyst.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Yang L, Huang H (2015) Transition-metal-catalyzed direct addition of unactivated C-H bonds to polar unsaturated bonds. Chem Rev 115:3468–3517

    Article  CAS  PubMed  Google Scholar 

  2. Liu C, Ji CL, Zhou T, Hong X, Szostak M (2021) Bimetallic cooperative catalysis for decarbonylative heteroarylation of carboxylic acids via C-O/C-H coupling. Angew Chem Int Ed 60:10690–10699

    Article  CAS  Google Scholar 

  3. Kumar R, Ravi C, Rawat D, Adimurthy S (2018) Base-promoted transition-metal-free arylation of imidazo-fused heterocycles with diaryliodonium salts. Eur J Org Chem 14:1665–1673

    Article  Google Scholar 

  4. Demangeat C, Saied T, Ramozzi R, Ingrosso F, Ruiz-Lopez M, Panossian A, Leroux FR, Fort Y, Comoy C (2019) Eur J Org Chem 2–3:547–556

    Article  Google Scholar 

  5. Moazzam A, Jafarpour F (2020) Chlorophyll-catalyzed photochemical regioselective coumarin C-H arylation with diazonium salts. New J Chem 44:16692–16696

    Article  CAS  Google Scholar 

  6. Ruch J, Aubin A, Erbland G, Fortunatoa A, Goddard J-P (2016) Metal-free arylation of pyrimidines through a photochemical process. Chem Commun 52:2326–2329

    Article  CAS  Google Scholar 

  7. Silva RC, Villela LF, Brocksom TJ, de Oliveira KT (2020) Direct C-H photoarylation of diazines using aryldiazonium salts and visible-light. RSC Adv 10:31115–31122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rahmati A, Moazzam A, Khalesi Z (2014) A one-pot four-component synthesis of N-arylidene-2-aryl-imidazo[1,2-a]azin-3-amines. Tetrahedron Lett 55:3840–3843

    Article  CAS  Google Scholar 

  9. Ruiz-Castillo P, Buchwald SL (2016) Applications of palladium-catalyzed C-N cross-coupling reactions. Chem Rev 116:12564–12649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Magano J, Dunetz JR (2011) Large-scale applications of transition metal-catalyzed couplings for the synthesis of pharmaceuticals. Chem Rev 111:2177–2250

    Article  CAS  PubMed  Google Scholar 

  11. Cho SH, Kim JY, Kwak J, Chang S (2011) Recent advances in the transition metal-catalyzed twofold oxidative C–H bond activation strategy for C–C and C–N bond formation. Chem Soc Rev 40:5068–5083

    Article  CAS  PubMed  Google Scholar 

  12. Ullmann F (1903) Ueber Eine Neue Bildungsweise Von Diphnylaminderivaten. Ber Dtsch Chem Ges 36:2382–2384

    Article  Google Scholar 

  13. Goldberg I (1906) Ueber Phenylirungen bei Gegenwart von Kupfer als Katalysator. Ber Dtsch Chem Ges 39:1691–1692

    Article  Google Scholar 

  14. Beletskaya IP, Cheprakov AV (2004) Copper in cross-coupling reactions: the post-ullmann chemistry. Coord Chem Rev 248:2337–2364

    Article  CAS  Google Scholar 

  15. Fors BP, Buchwald SL (2010) A multiligand based Pd catalyst for C-N cross-coupling reactions. J Am Chem Soc 132:15914–15917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cope JD, Sheridan PE, Galloway CJ, Awoyemi RF, Stokes SL, Emerson JP (2020) Synthesis and characterization of a tetradentate, N-heterocyclic carbene copper(II) complex and its use as a Chan−Evans−Lam coupling catalyst. Organometallics 39:4457–4464

    Article  CAS  Google Scholar 

  17. Mao J, Guo J, Song H, Ji SJ (2008) Copper-catalyzed amination of aryl halides with nitrogen-containing heterocycle using hippuric acid as the new ligand. Tetrahedron 64:1383–1387

    Article  CAS  Google Scholar 

  18. Sperotto E, van Klink GPM, de Vries JG, van Koten G (2008) Ligand-free copper-catalyzed C-S coupling of aryl iodides and thiols. J Org Chem 73:5625–5628

    Article  CAS  PubMed  Google Scholar 

  19. Altman RA, Shafir A, Choi A, Lichtor PA, Buchwald SL (2008) An improved Cu-based catalyst system for the reactions of alcohols with aryl halides. J Org Chem 73:284–286

    Article  CAS  PubMed  Google Scholar 

  20. Evans DA, Katz JL, West TR (1998) Synthesis of diaryl ethers through the copper-promoted arylation of phenols with arylboronic acids. An expedient synthesis of thyroxine. Tetrahedron Lett 39:2937–2940

    Article  CAS  Google Scholar 

  21. Lam PYS, Clark CG, Saubern S, Adams J, Winters MP, Chan DMT, Combs A (1998) New aryl/heteroaryl C-N bond cross-coupling reactions via arylboronic acid/cupric acetate arylation. Tetrahedron Lett 39:2941–2944

    Article  CAS  Google Scholar 

  22. Bhunia S, Pawar GG, Kumar SV, Jiang Y, Ma D (2017) Selected copper-based reactions for C−N, C−O, C−S, and C−C bond formation. Angew Chem Int Ed 56:16136–16179

    Article  CAS  Google Scholar 

  23. Lam PYS (2016) Synthetic methods in drug discovery: volume 1. R Soc Chem 1:242–273

    Google Scholar 

  24. Allen SE, Walvoord RR, Padilla-Salinas R, Kozlowski MC (2013) Aerobic copper-catalyzed organic reactions. Chem Rev 113:6234–6458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Han Y, Zhang M, Zhang YQ, Zhang ZH (2018) Copper immobilized at a covalent organic framework: an efficient and recyclable heterogeneous catalyst for the Chan-Lam coupling reaction of aryl boronic acids and amines. Green Chem 20:4891–4900

    Article  CAS  Google Scholar 

  26. Di JD, Zhang M, Chen YX, Wang JX, Geng SS, Tang JQ, Zhang ZH (2021) Copper anchored on phosphorus gC 3 N 4 as a highly efficient photocatalyst for the synthesis of N-arylpyridin-2-amines. Green Chem 23:1041–1049

    Article  CAS  Google Scholar 

  27. Collman JP, Zhong M, Zhang C, Costanzo S (2001) Catalytic activities of cu(II) complexes with nitrogen-chelating bidentate ligands in the coupling of imidazoles with arylboronic Acids. J Org Chem 66:7892–7897

    Article  CAS  PubMed  Google Scholar 

  28. Moon S-Y, Nam J, Rathwell K, Kim W-S (2014) Copper-catalyzed Chan-Lam coupling between sulfonyl azides and boronic acids at room temperature. Org Lett 16:338–341

    Article  CAS  PubMed  Google Scholar 

  29. Yu J-T, Guo H, Yi Y, Fei H, Jiang Y (2014) The Chan-Lam reaction of chalcogen elements leading to aryl chalcogenides. Adv Synth Catal 356:749–752

    Article  CAS  Google Scholar 

  30. Roy S, Sarma MJ, Kashyap B, Phukan P (2016) Chem Commun 52:e1170–e1173

    Article  Google Scholar 

  31. Vantourout JC, Miras HN, Isidro-Llobet A, Sproules S, Watson AJB (2017) Spectroscopic studies of the Chan-Lam amination: a mechanism-inspired solution to boronic ester reactivity. J Am Chem Soc 139:4769–4779

    Article  CAS  PubMed  Google Scholar 

  32. Hardouin Duparc V, Bano GL, Schaper F (2018) Chan-Evans-Lam couplings with copper iminoarylsulfonate complexes: scope and mechanism. ACS Catal 8:7308–7325

    Article  CAS  Google Scholar 

  33. Hardouin Duparc V, Schaper F (2017) Sulfonato-Imino copper (II) complexes: fast Chan-Evans-Lam coupling of amines and anilines. Dalton Trans 46:12766–12770

    Article  CAS  PubMed  Google Scholar 

  34. Abbenhuis HCL (1999) Heterogenization of metallocene catalysts for alkene polymerization. Angew Chem Int Ed 38:1058–1060

    Article  CAS  Google Scholar 

  35. Collisa AEC, Horváth IT (2011) Heterogenization of homogeneous catalytic systems. Catal Sci Technol 1:912–919

    Article  Google Scholar 

  36. Chen MN, Mo LP, Cui ZS, Zhang ZH (2019) Magnetic nanocatalysts: synthesis and application in multicomponent reactions. Curr Opin Green Sustain Chem 1:27–37

    Article  Google Scholar 

  37. Zhang M, Liu YH, Shang ZR, Hu HC, Zhang ZH (2017) Supported molybdenum on graphene oxide/Fe3O4: an efficient, magnetically separable catalyst for one-pot construction of spiro-oxindole dihydropyridines in deep eutectic solvent under microwave irradiation. Catal Commun 5:39–44

    Article  Google Scholar 

  38. Garnier T, Sakly R, Danel M, Chassaing S, Pale P (2017) Chan–Lam-type C-N cross-coupling reactions under base- and ligand-free Cui-Zeolite catalysis. Synthesis 49:1223–1230

    CAS  Google Scholar 

  39. Jia X, Peng P (2018) N, O-bidentate ligand-tunable copper(II) complexes as a catalyst for Chan-Lam coupling reactions of arylboronic acids with 1H-imidazole derivatives. Org Biomol Chem 16:8984–8988

    Article  CAS  PubMed  Google Scholar 

  40. Desmecht A, Sheet D, Poleunis C, Hermans S, Riant O (2019) Covalent grafting of BPin functions on carbon nanotubes and Chan–Lam–Evans post-functionalization. Chem Eur J 25:1436–1440

    Article  CAS  PubMed  Google Scholar 

  41. Dutta MM, Phukan P (2018) Catal Commun 5:38–42

    Article  Google Scholar 

  42. Sharma H, Mahajan H, Jamwal B, Paul S (2018) Catal Commun 10:68–73

    Article  Google Scholar 

  43. Mostafalu R, Kaboudin B, Kazemi F, Yokomatsu T (2014) RSC Adv 4:49273–49279

    Article  CAS  Google Scholar 

  44. Lin Y, Cai M, Fang Z, Zhao H (2016) Tetrahedron 9:3335–3343

    Article  Google Scholar 

  45. RezaáNaimi-Jamal M (2017) RSC Adv 7:46022–46027

    Article  Google Scholar 

  46. Garnier T, Sakly R, Danel M, Chassaing S, Pale P (2017) Synthesis 49:1223–1230

    CAS  Google Scholar 

  47. Kumari S, Pathak DD (2015) Tetrahedron Lett 1:4135–4142

    Google Scholar 

  48. Islam M, Mondal S, Mondal P, Roy AS, Tuhina K, Mobarok M, Paul S, Salam N, Hossain D (2011) Catal Lett 141:1171–1181

    Article  CAS  Google Scholar 

  49. Kantam ML, Venkanna GT, Sridhar C, Sreedhar B, Choudary BM (2006) J Org Chem 8:9522–9524

    Article  Google Scholar 

  50. Zhao Q, Chen D, Li Y, Zhang G, Zhanga F, Fan X (2013) Rhodium complex immobilized on graphene oxide as an efficient and recyclable catalyst for hydrogenation of cyclohexene. Nanoscale 5:882–885

    Article  CAS  PubMed  Google Scholar 

  51. Wang B, Chang TY, Jiang Z, Wei JJ, Zhang YH, Yang S, Fang T (2018) Catalytic dehydrogenation study of dodecahydro-N-ethylcarbazole by noble metal supported on reduced graphene oxide. Int J Hydrog Energy 43:7317–7325

    Article  CAS  Google Scholar 

  52. Xiangjun P, Xianyun X, Fujiang H, Qian L, Liangxian L (2019) Graphene oxide and its derivatives: their synthesis and use in organic synthesis. Curr Org Chem 23:188–204

    Article  Google Scholar 

  53. Ahmad MS, Nishina Y (2020) Graphene-based carbocatalysts for carbon–carbon bond formation. Nanoscale 12:12210–12227

    Article  CAS  PubMed  Google Scholar 

  54. Sharmaa H, Sharmaa S, Sharmaa C, Paula S, Clarkb JH (2019) Magnetically recoverable graphene oxide supported Co@Fe3O4/L-dopa for C-C cross-coupling and oxidation reactions in aqueous medium. Mol Catal 469:27–39

    Article  Google Scholar 

  55. Shang N, Feng C, Zhang H, Gao S, Tang R, Wang C, Wang Z (2013) Suzuki-Miyaura reaction catalyzed by graphene oxide supported palladium nanoparticles. Catal Commun 40:111–115

    Article  CAS  Google Scholar 

  56. Sun Z, Rong Z, Wang Y, Xia Y, Du W, Wang Y (2014) Selective hydrogenation of cinnamaldehyde over Pt nanoparticles deposited on reduced graphene oxide. RSC Adv 4:1874–1878

    Article  CAS  Google Scholar 

  57. Mosconi D, Blanco M, Gatti T, Calvillo L, Otyepka M, Bakandritsos A, Menna E, Agnoli S, Granozzi G (2019) Arene CH insertion catalyzed by ferrocene covalently heterogenized on graphene acid. Carbon 143:318–328

    Article  CAS  Google Scholar 

  58. Rayati S, Rezaie S, Nejabat F (2018) Mn(III)-porphyrin/graphene oxide nanocomposite as an efficient catalyst for the aerobic oxidation of hydrocarbons. C R Chim 21:696–703

    Article  CAS  Google Scholar 

  59. Liu Y, Zuo P, Wang F, Men J, Wang R, Jiao W, Liu Y (2019) Covalent immobilization of phthalocyanine on graphene oxide for the degradation of phenol. J Inst Chem 104:187–200

    CAS  Google Scholar 

  60. Mittal A, Kumari S, Parmanand D, Yadav SK, Sharma, (2020) A new copper complex on graphene oxide A heterogeneous catalyst for N-arylation and C-H activation. Appl Organomet Chem 34:1–12

    Article  Google Scholar 

  61. Kooti M, Karimi M, Nasiri E (2018) A novel copper complex supported on magnetic reduced graphene oxide: an efficient and green nanocatalyst for the synthesis of 1-amidoalkyl-2-naphthol derivatives. J Nanopart Res 20:1–16

    Article  CAS  Google Scholar 

  62. Naeimi H, Zarabi MF (2018) One pot synthesis of aminonaphthoquinone derivatives using Cu(II) immobilized on hyperbranched polyglycerol functionalized graphene oxide as a reusable catalyst under solvent-free conditions. Tetrahedron 74:2314–2323

    Article  CAS  Google Scholar 

  63. Chen J-Q, Li J-H, Dong Z-B (2020) A review on the latest progress of Chan-Lam coupling reaction. Adv Synth Catal 362:3311–3331

    Article  CAS  Google Scholar 

  64. Kazemnejadi M, Mahmoudi B, Sharafi Z, Nasseri MA, Allahresani A, Esmaeilpour M (2019) Synthesis and characterization of a new poly α-amino acid Co(II)-complex supported on magnetite graphene oxide as an efficient heterogeneous magnetically recyclable catalyst for efficient free-coreductant gram-scale epoxidation of olefins with molecular oxygen. J Organomet Chem 896:59–69

    Article  CAS  Google Scholar 

  65. Sajjadifar S, Rezayati S, Arzehgar Z, Abbaspour S, Torabi Jafroudi M (2018) Applications of iron and nickel immobilized on hydroxyapatite-core-shell γ-Fe2O3 as a nanomagnetic catalyst for the chemoselective oxidation of sulfides to sulfoxides under solvent-free conditions. J Chin Chem Soc 65:960–969

    Article  CAS  Google Scholar 

  66. Esmaeilpour M, Javidi J, Dehghani F, Dodeji FN (2015) A green one-pot three-component synthesis of tetrahydrobenzo[b]pyran and 3,4-dihydropyrano[c]chromene derivatives using a Fe3O4@SiO2–imid–PMAn magnetic nanocatalyst under ultrasonic irradiation or reflux conditions. RSC Adv 5:26625–26633

    Article  CAS  Google Scholar 

  67. Teja AS, Koh PY (2009) Prog Cryst Growth Charact Mater 1:22–45

    Article  Google Scholar 

  68. Bahadorikhalili S, Malek K, Mahdavi M (2020) Efficient one pot synthesis of phenylimidazo[1,2-a]pyridine derivatives using multifunctional copper catalyst supported on β-cyclodextrin functionalized magnetic graphene oxide. Appl Organomet Chem 34:e5913

    Article  CAS  Google Scholar 

  69. Haeri HS, Rezayati S, Nezhad ER, Darvishi H (2016) Fe2+ supported on hydroxyapatite-core–shell-c-Fe2O3 nanoparticles: efficient and recyclable green catalyst for the synthesis of 14-aryl-14H-dibenzo[a, j]xanthene derivatives. Res Chem Intermediat 42:4773–4784

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mahdavi.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2972 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemi, N., Moazzam, A., Bahadorikhalili, S. et al. N-Arylation Reaction of 2-Amino-N-phenylbenzamide with Phenyl Boronic Acid via Chan–Evans–Lam (CEL) Type Reaction Using Cu@Phen@MGO Catalyst. Catal Lett 153, 805–813 (2023). https://doi.org/10.1007/s10562-022-04010-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04010-6

Keywords

Navigation