Skip to main content
Log in

A Carbon Shell Covered Pd Catalyst for Hydrogenation of 4-Nitrothioanisole

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Catalytic hydrogenation of sulfur-containing substrates is an important and challenging reaction in the industry. In this work, carbon shell covered Pd catalysts were prepared by CVD process using acetylene as the precursor. During the process of CVD, the physical properties and the carbon content of the catalysts are closely related to the deposition temperature. The as-prepared C@Pd/TiO2 catalysts showed the higher conversion (nearly 100%) and stability for the hydrogenation of 4-nitrothioanisole than the Pd/TiO2 catalyst (45.5%). The excellent catalytic performance of C@Pd/TiO2 catalyst can be attributed to the appropriate amount of carbon shell covering the surface of the catalyst. Compared with Pd/TiO2 catalyst, the C@Pd/TiO2 catalysts has only a tiny amount of sulfur-containing substrates deposited on the catalysts surface after three recycles by XPS analysis, which illustrates the reason for sulfur-resistance of the carbon shell covered Pd-based catalyst.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ferro CTB, Santos BFD, Silva CDGD, Brand G, Domingues NLDC (2020) Review of the synthesis and activities of some sulfur-containing drugs. Curr Org Synth 17:192–210

    Article  CAS  Google Scholar 

  2. Zhang YY, Glass RS, Char K, Pyun J (2019) Rencent advances in the polymerization of elemental sulphur, inverse vulcanization and methods to obtain functional chalcogenide hybrid inorganic/organic polymers. Polym Chem 10:4078–4105

    Article  CAS  Google Scholar 

  3. Raviliousa GE, Jez JM (2012) Structural biology of plant sulfur metabolism: from assimilation to biosynthesis. Nat Prod Rep 29:1138–1152

    Article  Google Scholar 

  4. Braschi I, Paul G, Gatti G, Cossi M, Marchese L (2013) Embedding monomers and dimers of sulfonamide antibiotics into high silica zeolite Y: an experiment and computational study of the tautomeric forms involved. RSC Adv 3:7427–7437

    Article  CAS  Google Scholar 

  5. Meşeli T, Doğan SD, Gündüz MG, Kökbudak Z, Bogojevic SS, Noonan T, Vojnovic S, Wolber G, Runic JN (2021) Design, synthesis, antibacterial activity evaluation and molecular modeling studies of new sulfonamides containing a sulfathiazole moiety. New J Chem 45:8166–8177

    Article  Google Scholar 

  6. Chen YS, Xie C, Li Y, Song CS, Bolin TB (2010) Sulfur poisoning mechanism of steam reforming catalysts: an X-ray absorption near edge structure (XANES) spectroscopic study. Phys Chem Chem Phys 12:5707–5711

    Article  PubMed  CAS  Google Scholar 

  7. Quitete CPB, Manfro RL, Souza MMVM (2017) Perovskite-based catalysts for tar removal by steam reforming: effect of the presence of hydrogen sulfide. Int J Hydrogen Energy 42:9873–9880

    Article  CAS  Google Scholar 

  8. Xiong RJ, Zhao WQ, Wang ZQ, Zhang MH (2021) A sulfur-tolerant phosphorus doped Pd/C catalyst for hydrogenation of 4-nitrothioanisole. Mol Catal 500:111332

    Article  CAS  Google Scholar 

  9. Zhang ZH, Qin CL, Ou ZL, Ran JY (2020) Resistance of Ni/perovskite catalysts to H2S in toluene steam reforming for H2 production. Int J Hydrogen Energy 45:26800–26811

    Article  CAS  Google Scholar 

  10. Braghiroli FL, Bouafif H, Koubaa A (2019) Enhanced SO2 adsorption and desorption on chemically and physically activated biochar made from wood residues. Ind Crop Prod 138:111456

    Article  CAS  Google Scholar 

  11. Chandrasekaran S, Yao L, Deng LB, Bowen C, Zhang Y, Chen SM, Lin ZQ, Peng F, Zhang PX (2019) Rencent advances in metal sulfides: from controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond. Chem Soc Rev 48:4178–4280

    Article  PubMed  CAS  Google Scholar 

  12. Vita A, Italiano C, Pino L, Laganà M, Recupero V (2017) Hydrogen-rich gas production by steam reforming of n-dodecane. Part II: stability, regenerability and sulfur poisoning of low loading Ph-based catalyst. Appl Catal B 218:317–326

    Article  CAS  Google Scholar 

  13. Nagai M (2007) Transition-metal nitrides for hydrotreating catalyst—synthesis, surface properties, and reactivities. Appl Catal A 322:178–190

    Article  CAS  Google Scholar 

  14. Nagai M (1998) Simultaneous hydrodesulfurization, hydrodeoxygenation, and hydrogenation with molybdenum carbide. Appl Catal A 168:219–228

    Article  Google Scholar 

  15. Hayes JR, Bowker RH, Gaudette AF, Smith MC, Moak CE, Nam CY, Pratum TK, Bussell ME (2010) Hydrodesulfurization properties of rhodium phosphide: comparison with rhodium metal and sulfide catalysts. J Catal 276:249–258

    Article  CAS  Google Scholar 

  16. Yuan CK, Yao N, Wang XD, Wang JG, Lv DY, Li XN (2015) The SiO2 supported bimetallic Ni–Ru particles: a good sulfur-tolerant catalyst for methanation reaction. Chem Eng J 260:1–10

    Article  CAS  Google Scholar 

  17. Wei YC, Zhang P, Xiong J, Yu Q, Wu QQ, Zhao Z, Liu J (2020) SO2-tolerant catalytic removal of soot particles over 3D ordered microporous Al2O3-supported binary Pt–Co oxide catalysts. Environ Sci Technol 54:6947–6956

    Article  PubMed  CAS  Google Scholar 

  18. Cheng M, Zhang X, Guo ZB, Lv PF, Xiong RJ, Wang ZQ, Zhou Z, Zhang MH (2021) Pd-promoting reduction of zinc salt to PdZn alloy catalyst for the hydrogenation of nitrothioanisole. J Colloid Interface Sci 602:459–468

    Article  PubMed  CAS  Google Scholar 

  19. Jiao F, Guo HL, Chai YM, Awala H, Mintova S, Liu CG (2018) Synergy between a sulfur-tolerant Pt/Al2O3@sodalite core–shell catalyst and a CoMo/Al2O3 catalyst. J Catal 368:89–97

    Article  CAS  Google Scholar 

  20. Duan AJ, Li TS, Zhao Z, Liu BJ, Zhou XF, Jiang GY, Liu J, Wei YC, Pan HF (2015) Synthesis of hierarchically porous L-KIT-6 silica-alumina material and the super catalytic performances for hydrodesulfurization of benzothiophene. Appl Catal B 165:736–773

    Article  Google Scholar 

  21. Zhan YY, Zhou C, Jin F, Chen CQ, Jiang LL (2020) Ru/TiO2 catalyst for selective hydrogenation of benzene: effect of surface hydroxyl group and spillover hydrogen. Appl Surf Sci 525:146627

    Article  CAS  Google Scholar 

  22. Wang CY, Li YB, Zhang CB, Chen XY, Liu CL, Weng WZ, Shan WP, He H (2021) A simple strategy to improve Pd dispersion and enhance Pd/TiO2 catalytic activity for fomaldehyde oxidation: the roles of surface defects. Appl Catal B 282:119540

    Article  CAS  Google Scholar 

  23. Gonzalez A, Berenguer A, Cazorla D, Cardenas F (2020) Zn-promoted selective gas-phase hydrogenation of tertiary and secondary C4 alkynols over supported Pd. ACS Appl Mater Interfaces 12:28158–28168

    Article  Google Scholar 

  24. Setiawan A, Kennedy EM, Dlugogorski BZ, Adesina AA, Tkachenko O, Stockenhuber M (2014) Evidence of the formation of surface palladium carbide during the catalytic combustion of lean methane/air mixtures. Energy Technol 2:243–249

    Article  CAS  Google Scholar 

  25. Ohaska T, Izumi F, Fujiki Y (1978) Raman spectra of anatase, TiO2. J Raman Spectrosc 7:321–324

    Article  Google Scholar 

  26. Oh S, Lee S, Oh M (2020) Zeolite imidazolate framework-based composite incorporated with well-dispersed CoNi nanoparticles efficient catalytic reduction reaction. ACS Appl Mater Interfaces 12:18625–18633

    Article  PubMed  CAS  Google Scholar 

  27. Sandoval A, Zanella R, Klimova TE (2017) Titania nanotubes decorated with anatase nanocrystals as support for active and stable gold catalysts for CO oxidation. Catal Today 282:140–150

    Article  CAS  Google Scholar 

  28. Wan GP, Yu L, Peng XG, Wang GZ, Huang XQ, Zhao HN, Qin Y (2015) Preparation and microwave absorption properties of uniform TiO2@C core–shell nanocrystals. RSC Adv 5:77443–77448

    Article  CAS  Google Scholar 

  29. Pawar V, Appari S, Monder DS, Janardhanan VM (2017) Study of combined deactivation due to sulfur poisoning and carbon deposition during biogas dry reforming on supported Ni catalyst. Ind Eng Chem Res 56:8448–8455

    Article  CAS  Google Scholar 

  30. Xiong RJ, Ren WQ, Wang ZQ, Zhang MH (2021) Triphenylphosphine as efficient antidote for the sulfur-poisoning of the Pd/C hydrogenation catalyst. ChemCatChem 13:548–552

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the Natural Science of Foundation China (Grant No. 21576140), the Fundamental Research Funds for the Central Universities (Grant Nos. Nankai University 63201039, 111 project B12015), MOE Innovation Team (IRT13R30 and IRT13022) of China, and Tianjin Normal University Innovation Plan (135202XC1601).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiqiang Wang or Minghui Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 109 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, R., Cheng, M., Wang, R. et al. A Carbon Shell Covered Pd Catalyst for Hydrogenation of 4-Nitrothioanisole. Catal Lett 152, 3607–3616 (2022). https://doi.org/10.1007/s10562-022-03925-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-03925-4

Keywords

Navigation