Skip to main content
Log in

Agro-Waste Generated Pd/CAP-Ash Catalyzed Ligand-Free Approach for Suzuki–Miyaura Coupling Reaction

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

We converted agro-waste Custard Apple Peels (CAP) to ash via thermal treatment, on which Pd(OAc)2 was immobilized easily that produced a low-cost, highly efficient Pd/CAP-ash catalyst. The prepared catalyst was fully characterized by using FT-IR, SEM, EDX, XRF, DSC-TGA, BET, HR-TEM, and XPS techniques. The Pd/CAP-ash catalyst was conveniently applied for the Suzuki–Miyaura coupling reaction under external base free and ligand-free conditions in an aqueous-organic solvent to produce biphenyls in good to excellent yields. The main attraction of our protocol an application of palladium-supported agro-waste material which is easily recoverable and recyclable provides mono and bis-coupled derivatives in a short reaction time.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1
Scheme 2
Fig. 9
Scheme 3

Similar content being viewed by others

References

  1. Hooshmand SE, Heidari B, Sedghi R, Varma RS (2019) Green Chem 21:381–405

    Article  CAS  Google Scholar 

  2. Biffis A, Centomo P, Zotto AD, Zecca M (2018) Chem Rev 118(4):2249–2320

    Article  CAS  PubMed  Google Scholar 

  3. Liang Q, Xing P, Huang Z, Dong J, Barry Sharpless K, Li X, Jiang B (2015) Org Lett 17:1942

    Article  CAS  PubMed  Google Scholar 

  4. Borhade SR, Waghmode SB (2011) Beilstein J Org Chem 7:310–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hill NJ, Bowman MD, Esselman BJ, Byron SD, Kreitinger J, Leadbeater NE (2014) J Chem Educ 9:1054–1058

    Article  CAS  Google Scholar 

  6. Bumagin NA, Bykov VV, Beletskaya IP (1989) Izvest Akad Nauk SSSR Ser Khim 2394–2399

  7. Beller M, Krauter JGE, Zapf A, Bogdanovic S (1999) Catal Today 48:279–290

    Article  CAS  Google Scholar 

  8. Fleckenstein CA, Plenio H (2007) Green Chem 9:1287–1291

    Article  CAS  Google Scholar 

  9. Ueda M, Nishimura M, Miyaura N (2000) Synlett 6:856–858

    Google Scholar 

  10. Moore LR, Shaughnessy KH (2001) Org Lett 3:2757–2759

    Article  CAS  Google Scholar 

  11. Genet JP, Linquist A, Blart E, Mouries V, Savignac M (1995) Tetrahedron Lett 36:1443–1446

    Article  CAS  Google Scholar 

  12. Leadbeater NE, Marco M (2003) J Org Chem 68(3):888–892

    Article  CAS  PubMed  Google Scholar 

  13. Anderson KW, Buchwald SL (2005) Angew Chem Int Ed 44:6173–6177

    Article  CAS  Google Scholar 

  14. Lipshutz BH, Petersen TB, Abela AR (2008) Org Lett 10:1333–1336

    Article  CAS  PubMed  Google Scholar 

  15. Lipshutz BH, Abela AR (2008) Org Lett 10:5329–5332

    Article  CAS  PubMed  Google Scholar 

  16. Mahanta A, Mondal M, Thakur AJ, Bora U (2016) Tetrahedron Lett 57(29):3091–3095

    Article  CAS  Google Scholar 

  17. Veisi H, Rostami A, Shirinbayan M (2016) Appl Organomet Chem 31(6):1–9

    Google Scholar 

  18. Arvela RK, Leadbeater NE (2005) Org Lett 7:2101–2104

    Article  CAS  PubMed  Google Scholar 

  19. Dawood KM (2007) Tetrahedron 63:9642–9651

    Article  CAS  Google Scholar 

  20. Begum T, Mondal M, Borpuzari MP, Kar R, Kalita G, Gogoi PK, Bora U (2017) Dalton Trans 46:539–546

    Article  CAS  PubMed  Google Scholar 

  21. Mondal M, Dewan A, Begum T, Gogoi PK, Thakur AJ, Bora U (2016) Catal Lett 146:1718–1728

    Article  CAS  Google Scholar 

  22. Nehlig E, Waggeh B, Millot N, Lalatonne Y, Mottea L, Guenin E (2017) Dalton Trans 46:539–546

    Article  CAS  Google Scholar 

  23. Paul S, Islam MM, Islam SM (2015) RSC Adv 5:42193–42221

    Article  CAS  Google Scholar 

  24. Meise M, Haag R (2008) Chem Sus Chem 1:637–642

    Article  CAS  Google Scholar 

  25. Han Y, Huynh HV, Tan GK (2007) Organometallics 26:6581–6585

    Article  CAS  Google Scholar 

  26. Brendgen T, Frank M, Schatz J (2006) Eur J Org Chem 2378–2383

  27. Sheloumov AM, Tundo P, Dolgushin FM, Koridze AA (2008) Eur J Inorg Chem 572–576

  28. Liu L, Zhang Y, Wang Y (2005) J Org Chem 70:6122–6125

    Article  CAS  PubMed  Google Scholar 

  29. Polshettiwar V, Len C, Fihri A (2009) Coord Chem Rev 253:2599–2626

    Article  CAS  Google Scholar 

  30. Hervé G, Len C (2014) RSC Adv 4:46926–46929

    Article  CAS  Google Scholar 

  31. Fihri A, Luart D, Len C, Solhy A, Chevrin C, Polshettiwar V (2011) Dalton Trans 40:3116–3121

    Article  CAS  PubMed  Google Scholar 

  32. Sarmah M, Mondal M, Bora U (2017) Chem Select 2:5180–5188

    CAS  Google Scholar 

  33. Lennox AJJ, Lloyd-Jones GC (2013) Angew Chem Int Ed 52:7362–7370

    Article  CAS  Google Scholar 

  34. Miyaura N (2002) J Organomet Chem 653:54–57

    Article  CAS  Google Scholar 

  35. Braga AAC, Morgon NH, Ujaque G, Maseras F (2005) J Am Chem Soc 127:9298–9307

    Article  CAS  PubMed  Google Scholar 

  36. Eissen M (2012) Chem Educ Res Pract 13:103–111

    Article  CAS  Google Scholar 

  37. Eilks I, Rauch F (2012) Chem Educ Res Pract 13:57–58

    Article  Google Scholar 

  38. Simon MO, Li CJ (2012) Chem Soc Rev 41:1415–1427

    Article  CAS  PubMed  Google Scholar 

  39. Anastas P, Eghbali N (2010) Chem Soc Rev 39:301–312

    Article  CAS  PubMed  Google Scholar 

  40. Carril M, San Martin R, Dominguez E (2008) Chem Soc Rev 37:639–647

    Article  CAS  PubMed  Google Scholar 

  41. Gohain M, Laskar K, Paul AK, Daimary N, Maharana M, Goswami IK, Hazarika A, Bora U, Deka D (2020) Renew Energy 147:541–555

    Article  CAS  Google Scholar 

  42. Gohain M, Laskar K, Phukon H, Bora U, Kalita D, Deka D (2020) Waste Manag 102:212–221

    Article  CAS  PubMed  Google Scholar 

  43. Budavari S, Neil MJO, Smith A (1996) The merk index: an encyclopedia of chemicals, drugs and biologicals, 12th edn. Merk & Co, USA

    Google Scholar 

  44. Boren J, Cascante M, Marin S, Comin-Anduix B, Centelles JJ, Lim S, Bassilian S, Ahmed S, Lee WN, Boros LG (2001) J Biol Chem 276:37747–37753

    Article  CAS  PubMed  Google Scholar 

  45. Capdeville R, Buchdunger E, Zimmerman J, Matter A (2002) Nat Rev Drug Discov 1:493–502

    Article  CAS  PubMed  Google Scholar 

  46. Martin R, Buchwald SL (2008) Acc Chem Res 41:1461–1473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Schareina T, Kepme R (2002) Angew Chem Int Ed 41:1521–1523

    Article  CAS  Google Scholar 

  48. Urgaonkar S, Nagarajan M, Verkade JG (2002) Tetrahedron Lett 43:8921–8924

    Article  CAS  Google Scholar 

  49. Das P, Bora U, Tairai A, Sharma C (2010) Tetrahedron Lett 51:1479–1482

    Article  CAS  Google Scholar 

  50. Borah G, Boruah D, Sarmah G, Bharadwaj S, Bora U (2013) Appl Organomet Chem 27:688–694

    Article  CAS  Google Scholar 

  51. Gstottmayr CWK, Bohm VPW, Herdtweck E, Grosche M, Herrmann WA (2002) Angew Chem Int Ed 41:1363–1365

    Article  CAS  Google Scholar 

  52. Botella L, Najera C (2002) Angew Chem Int Ed 41:179–181

    Article  CAS  Google Scholar 

  53. Botella L, Najera C (2002) J Organomet Chem 663:46–57

    Article  CAS  Google Scholar 

  54. Mu B, Li T, Xu W, Zeng G, Liu P, Wu Y (2007) Tetrahedron 63:11475–11488

    Article  CAS  Google Scholar 

  55. Bedford RB, Welch SL (2001) Chem Commun 129–130

  56. Bedford RB (2003) Chem Commun 1787–1796

  57. Kuivila HG, Reuwer JF, Mangravite JA (1964) J Am Chem Soc 86:2666–2670

    Article  CAS  Google Scholar 

  58. Taylor R (1972) In: Bamford CH, Tipper CFH (eds) Comprehensive chemical kinetics. Elsevier, New York, 13:287–302, 367–370

  59. Kuivila HG, Reuwer JF, Mangravite JA (1963) Can J Chem 41:3081–3090

    Article  CAS  Google Scholar 

  60. Karimi B, Elhamifar D, Clark JH, Hunt AJ (2010) Chem Eur J 16(27):8047–8053

    Article  CAS  PubMed  Google Scholar 

  61. Karimi B, Behzadnia H, Farhangi E, Jafari E, Zamani A (2010) Curr Org Synth 7:543–567

    Article  CAS  Google Scholar 

  62. Su FZ, Liu YM, Cao Y, Fan KN (2008) Angew Chem Int Ed 47:334–337

    Article  CAS  Google Scholar 

  63. Pillai UR, Sahle-Demessite E, Baiker A (2004) Green Chem 6:161–165

    Article  CAS  Google Scholar 

  64. Datta KKR, Eswaramoorthy M, Rao CNR (2007) J Mater Chem 17:613–615

    Article  CAS  Google Scholar 

  65. Zhu J, Zhou J, Zhao T, Zhou X, Chen D, Yuan W (2009) Appl Catal A 352:243–250

    Article  CAS  Google Scholar 

  66. Sidhpuria KB, Patel HA, Parikh PA, Bahadur P, Bajaj HC, Jasra RV (2009) Appl Clay Sci 42:386–390

    Article  CAS  Google Scholar 

  67. Karimi B, Enders D (2006) Org Lett 8:1237–1240

    Article  CAS  PubMed  Google Scholar 

  68. Li J, Zhang Y, Han D, Gao Q, Li C (2009) J Mol Catal A 298:31–35

    Article  CAS  Google Scholar 

  69. Choi M, Lee DH, Ryoo R (2009) Angew Chem Int Ed 48:3673–3676

    Article  CAS  Google Scholar 

  70. Mahanta A, Mandal M, Thakur AJ, Bora U (2016) Tetrahedron Lett 57(29):3091–3095

    Article  CAS  Google Scholar 

  71. Patil RC, Patil UP, Jagdale AA, Shinde SK, Patil SS (2020) Res Chem Intermed 46:3527–3543

    Article  CAS  Google Scholar 

  72. Patil RC, Shinde SK, Patil UP, Birajdar AT, Patil SS (2021). Res Chem Intermed 47: 1675–1691

    Article  CAS  Google Scholar 

  73. Patil UP, Patil RC, Patil SS (2019) J Heterocycl Chem 56:1898–1913

    Article  CAS  Google Scholar 

  74. Deka DC, Talikdar NN (2007) Indian J Tradit Know 6:72–78

    Google Scholar 

  75. Jenkins BM, Bakker RR, Wei JB (1996) Biomass Bioenergy 4:177–200

    Article  Google Scholar 

  76. Budarin VL, Clark JH, Lanigan BA, Shuttleworth P, Breeden SW, Wilson AJ, Macquarrie DJ, Milkowski K, Jones J, Bridgeman T, Ross A (2009) Bioresour Technol 100:6064–6068

    Article  CAS  PubMed  Google Scholar 

  77. Njogu P, Kinyua R, Muthoni P, Nemoto Y (2015) Energy Power Eng 7:209–216

    Article  Google Scholar 

  78. Liu G, Bai X, Lv H (2017) Appl Organomet Chem 31:e3587

    Article  CAS  Google Scholar 

  79. Pourjavadi A, Habibi Z (2018) Appl Organomet Chem 32:e4480

    Article  CAS  Google Scholar 

  80. Oh CH, Lim YM (2002) Bull Korean Chem Soc 23(5):663–664

    Article  CAS  Google Scholar 

  81. Naseer MM, Hameed S (2012) Appl Organomet Chem 26:330–334

    Article  CAS  Google Scholar 

  82. Ikram HM, Rasool N, Zubair M, Khan KM, Chotana GA, Akhtar MN, Abu N, Alitheen NB, Elgorban AM, Rana UA (2016) Molecules 21:977–987

    Article  PubMed Central  CAS  Google Scholar 

  83. Sinclair DJ, Sherburn MS (2005) J Org Chem 70:3730–3733

    Article  CAS  PubMed  Google Scholar 

  84. Sarmah M, Dewan A, Mondal M, Thakur A, Bora U (2016) RSC Adv 6:28981–28985

    Article  CAS  Google Scholar 

  85. Boruah P, Ali A, Saikia B, Sarma D (2015) Green Chem 17:1442–1445

    Article  CAS  Google Scholar 

  86. Sarmah M, Dewan A, Thakur A, Bora U (2017) Chem Select 2:7091–7095

    CAS  Google Scholar 

  87. Boruah P, Ali A, Chetia M, Saikia B, Sarma D (2015) Chem Commun 51:11489–11492

    Article  CAS  Google Scholar 

  88. Appa R, Prasad S, Lakshmidevi J, Naidu B, Narasimhulu M, Venkateswarlu K (2019) Appl Organomet Chem 33:5126–5135

    Article  CAS  Google Scholar 

  89. Rosa DS, Vargas BP, Silveira MV, Rosa CH, Martins ML, Rosa GR (2019) Waste Biomass Valoriz 10:2285–2296

    Article  CAS  Google Scholar 

  90. Schmitt CR, Rosa DS, Vargas BP, Rosa CH, Duarte FA, Scheeren CW, Lopes TJ, Trombetta FN, Rosa GR (2018) J Clean Prod 185:342–346

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors, Rupesh C. Patil is grateful to Chhatrapati Shahu Maharaj Research Training and Human Development Institute (SARTHI), Pune (Government of Maharashtra), India for the award of the CMSRF-2019 fellowship. [CIN-U74999PN2018NPL177394, dated 11th Sept. 2019]

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh S. Patil.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4372 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, R.C., Jagdale, A.A., Patil, U.P. et al. Agro-Waste Generated Pd/CAP-Ash Catalyzed Ligand-Free Approach for Suzuki–Miyaura Coupling Reaction. Catal Lett 151, 3617–3631 (2021). https://doi.org/10.1007/s10562-021-03597-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03597-6

Keywords

Navigation