Skip to main content
Log in

Biocatalytic Decarboxylation of Aromatic l-Amino Acids with In Situ Removal of Both Products for Enhanced Production of Biogenic Amines

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Biogenic amines are important messengers in neurotransmission, drawing attention to pharmaceutical applications. Here, we developed a novel biocatalytic process for the preparation of biogenic amines using aromatic l-amino acid decarboxylase (AADC) under an in situ product removal (ISPR) condition. The AADC from Bacillus atrophaeus (AADC-BA) showed broad substrate specificity for aromatic amino acids, affording > 90% conversions of 10 mM substrates to corresponding products: 2-phenylethylamine (2-PEA), tryptamine, serotonin, and dopamine. Owing to enzyme inhibitions by the reaction products, we implemented an ISPR strategy using a cation exchange resin and an open reactor system for removal of amine and CO2, respectively. Under the open-air conditions, the addition of Dowex 50WX8 afforded 81% conversion of 100 mM l-phenylalanine to 2-PEA within 1 h, whereas 56% conversion was obtained without the resin. The ISPR strategy enabled the preparative-scale production of serotonin from 5-hydroxy-l-tryptophan (405 mg), yielding > 99% conversion within 40 min.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ng J, Papandreou A, Heales SJ, Kurian MA (2015) Nat Rev Neurol 11:567–584

    Article  CAS  Google Scholar 

  2. Khan MZ, Nawaz W (2016) Biomed Pharmacother 83:439–449

    Article  CAS  Google Scholar 

  3. Berry MD, Gainetdinov RR, Hoener MC, Shahid M (2017) Pharmacol Ther 180:161–180

    Article  CAS  Google Scholar 

  4. Jesulola E, Micalos P, Baguley IJ (2018) Behav Brain Res 341:79–90

    Article  CAS  Google Scholar 

  5. Shimazu S, Miklya I (2004) Prog Neuro-Psychopharmacol Biol Psychiatry 28:421–427

    Article  CAS  Google Scholar 

  6. Sánchez-Jiménez F, Ruiz-Pérez MV, Urdiales JL, Medina MA (2013) Br J Pharmacol 170:4–16

    Article  Google Scholar 

  7. Frederick AL, Stanwood GD (2009) Dev Neurosci 31:7–22

    Article  CAS  Google Scholar 

  8. Serra S, Fuganti C, Brenna E (2005) Trends Biotechnol 23:193–198

    Article  CAS  Google Scholar 

  9. Ali S, Nawaz W (2016) Appl Biochem Biotechnol 179:1435–1444

    Article  CAS  Google Scholar 

  10. Park S, Kang K, Lee SW, Ahn M-J, Bae J-M, Back K (2011) Appl Microbiol Biotechnol 89:1387–1394

    Article  CAS  Google Scholar 

  11. Zhang H, Lu Y, Wu S, Wei Y, Liu Q, Liu J, Jiao Q (2016) J Mol Catal B Enzym 124:38–44

    Article  CAS  Google Scholar 

  12. Anderson WA, Moo-Young M, Legge RL (1992) Biotechnol Bioeng 39:781–789

    Article  CAS  Google Scholar 

  13. Zhu MY, Juorio AV (1995) Gen Pharmacol 26:681–696

    Article  CAS  Google Scholar 

  14. Berry MD, Juorio AV, Li XM, Boulton AA (1996) Neurochem Res 21:1075–1087

    Article  CAS  Google Scholar 

  15. Sáenz-De-Miera LE, Ayala FJ (2004) J Evol Biol 17:55–66

    Article  Google Scholar 

  16. Burchett SA, Hicks TP (2006) Prog Neurobiol 79:223–246

    Article  CAS  Google Scholar 

  17. Manegold C, Hoffmann GF, Degen I, Ikonomidou H, Knust A, Laaß MW, Pritsch M, Wilichowski E, Hörster F (2009) J Inherit Metab Dis 32:371–380

    Article  CAS  Google Scholar 

  18. D’Este M, Alvarado-Morales M, Angelidaki I (2018) Biotechnol Adv 36:14–25

    Article  Google Scholar 

  19. Wang H, Liu W, Shi F, Huang L, Lian J, Qu L, Cai J, Xu Z (2018) Metab Eng 48:279–287

    Article  CAS  Google Scholar 

  20. Fordjour E, Adipah FK, Zhou S, Du G, Zhou J (2019) Microb Cell Fact 18:74

    Article  Google Scholar 

  21. Li T, Huo L, Pulley C, Liu A (2012) Bioorg Chem 43:2–14

    Article  CAS  Google Scholar 

  22. Park E-S, Shin J-S (2011) Enzyme Microb Technol 49:380–387

    Article  CAS  Google Scholar 

  23. Han S-W, Shin J-S (2016) J Mol Catal B Enzym 133:S500–S507

    Article  Google Scholar 

  24. Yuwen L, Zhang F-L, Chen Q-H, Lin S-J, Zhao Y-L, Li Z-Y (2013) Sci Rep 3:1753

    Article  Google Scholar 

  25. Zhang K, Ni Y (2014) Protein Expr Purif 94:33–39

    Article  CAS  Google Scholar 

  26. Kezmarsky ND, Xu H, Graham DE, White RH (2005) Biochim Biophys Acta Gen Subj 1722:175–182

    Article  CAS  Google Scholar 

  27. Kalb D, Gressler J, Hoffmeister D (2016) ChemBioChem 17:132–136

    Article  CAS  Google Scholar 

  28. Labrou NE, Clonis YD (1999) Arch Biochem Biophys 365:17–24

    Article  CAS  Google Scholar 

  29. Jung DH, Choi W, Choi KY, Jung E, Yun H, Kazlauskas RJ, Kim BG (2013) Appl Microbiol Biotechnol 97:1501–1511

    Article  CAS  Google Scholar 

  30. Dimroth P, Thomer A (1986) Eur J Biochem 156:157–162

    Article  CAS  Google Scholar 

  31. Black BC, Smarrelli J (1986) Biochim Biophys Acta Protein Struct Mol Enzymol 870:31–40

    Article  CAS  Google Scholar 

  32. Moreira MJA, Ferreira LMGA (2005) Chem Eng Sci 60:5022–5034

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2019R1F1A1062845). S.-W. Han was financially supported by Initiative for Biological Function & Systems under the BK21 PLUS Program of Korean Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Shik Shin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 189 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, SW., Choi, YR. & Shin, JS. Biocatalytic Decarboxylation of Aromatic l-Amino Acids with In Situ Removal of Both Products for Enhanced Production of Biogenic Amines. Catal Lett 151, 2996–3003 (2021). https://doi.org/10.1007/s10562-021-03535-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03535-6

Keywords

Navigation