Skip to main content

Advertisement

Log in

Insight into the Structures and Electrocatalytic Activities of PdAg Alloy on RGO in the Oxidation of Ethanol, Ethylene Glycol and Glycerol

  • Published:
Catalysis Letters Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The biorenewable alcohols are identified as the promising energy in fuel cells, but the lack of efficient catalysts limits the electricity output. Here, we chemically grew the PdAg alloy nanoparticles (NPs) on reduced graphene oxide (RGO) to obtain PdxAgy(m)/RGO, and investigated the dependences of peak current densities on the metal loadings (m), Pd mole fractions (x), and sizes. The maximal peak currents of 1.86, 4.88, 14.3 and 13.6 × 104 mA cm−2 mgPd−1 were respectively achieved in the electrooxidation reactions of methanol, ethanol, ethylene glycol and glycerol. It is shown that the interactions of PdAg NPs with RGO can control the catalytic efficiencies through mediating the electronic characteristics of metal NPs and the reactant absorptions. Except the catalysts for methanol oxidation reaction, the efficient catalysis possesses the same lattice structure in PdAg alloys with the optimized m, and gives a common descriptor to select the catalyst with high catalytic activity.

Graph Abstarct

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Serov A, Kwak C (2010) Appl Catal, B 97:1–12

    CAS  Google Scholar 

  2. Xue J, Han GT, Ye WN, Sang YT, Li HL, Guo PZ, Zhao XS (2016) ACS Appl Mater Interfaces 8:34497–34505

    PubMed  CAS  Google Scholar 

  3. Wu WP, Periasamy AP, Lin GL, Shih ZY, Chang HT (2015) J Mater Chem A 3:9675–9681

    CAS  Google Scholar 

  4. Falase A, Main M, Garcia K, Serov A, Lau C, Atanassov P (2012) Electrochim Acta 66:295–301

    CAS  Google Scholar 

  5. Divya P, Ramaprabhu S (2013) J Mater Chem A 1:13605

    CAS  Google Scholar 

  6. Gu Z, Li S, Xiong Z, Xu H, Gao F, Du YK (2018) J Colloid Interface Sci 521:111–118

    PubMed  CAS  Google Scholar 

  7. Ahmed MS, Kim MS, Jeon S (2016) J Nanosci Nanotechnol 16:8294–8301

    CAS  Google Scholar 

  8. Wang XG, Zhu FC, He YW, Wang M, Zhang ZH, Ma ZZ, Li RX (2016) Adv Colloid Interface Sci 468:200–210

    CAS  Google Scholar 

  9. Feng YG, Bu LZ, Guo SJ, Guo J, Huang XQ (2016) Small 7:4464–4470

    Google Scholar 

  10. Jin C, Zhang Z, Chen Z (2013) Int J Electrochem Sci 8:4215–4224

    CAS  Google Scholar 

  11. Liu J, Zhou H, Wang Q, Zeng F, Kuang Y (2012) J Mater Sci 47:2188–2194

    CAS  Google Scholar 

  12. Jana R, Subbarao U, Peter SC (2016) J Power Sources 301:160–169

    CAS  Google Scholar 

  13. Zheng JN, Li SS, Ma XH, Chen FY, Wang AJ, Chen JR, Feng JJ (2014) J Power Sources 262:270–278

    CAS  Google Scholar 

  14. Tao Y, Dandapat A, Chen L, Huang Y, Sasson Y, Lin Z, Zhang J, Guo L, Chen T (2016) Langmuir 32:8557–8564

    PubMed  CAS  Google Scholar 

  15. Qi J, Benipal N, Liang CH, Li WZ (2016) Appl Catal B 199:494–503

    CAS  Google Scholar 

  16. Gao F, Zhang YP, Song PP, Wang J, Wang CQ, Guo J, Du YK (2019) J Power Sources 418:186–192

    CAS  Google Scholar 

  17. Yang Z, Liu L, Wang A, Yuan J, Feng J, Xu Q (2017) Int J Hydrogen Energy 42:2034–2044

    CAS  Google Scholar 

  18. Silva LSR, Almeida CVS, Meneses CT, Batista EA, Santos SF, Eguiluz KIB, Salazar-Bandaab GR (2019) Appl Catal, B 251:313–325

    CAS  Google Scholar 

  19. Chen D, Zhang RH, Hu QY, Guo YF, Zhan W, Chen SN, Zhou XW, Dai ZX (2019) ACS Appl Energy Mater 2:5525–5533

    CAS  Google Scholar 

  20. Yun QB, Lu QP, Li CL, Chen B, Zhang QH, He QY, Hu ZN, Zhang ZC, Ge YY, Yang NL, Ge JJ, He YB, Gu L, Zhang H (2019) ACS Nano 13:14329–14336

    PubMed  CAS  Google Scholar 

  21. Jin LJ, Xu H, Chen CY, Shang HY, Wang Y, Du YK (2019) Inorg Chem 58:12377–12384

    PubMed  CAS  Google Scholar 

  22. Rajamani AR, Ashly PC, Dheer L, Sarma SC, Sarkar S, Bagchi D, Waghmare UV, Prter SC (2019) ACS Appl Energy Mater 2:7132–7141

    CAS  Google Scholar 

  23. Ye SH, Feng JX, Li GR (2016) ACS Catal 6:7962–7969

    CAS  Google Scholar 

  24. Zhang Q, Jiang L, Wang H, Liu J, Zhang J, Zheng Y, Li F, Yao C, Hou S (2018) ACS Sustainable Chem Eng 6:7507–7514

    CAS  Google Scholar 

  25. Li ZS, Zhang L, Yang CX, Chen JM, Wang Z, Bao L, Wu FW, Shen PK (2019) Int J Hydrogen Energy 44:6172–6181

    CAS  Google Scholar 

  26. Liu TY, Li CZ, Yuan Q (2018) ACS Omega 3:8724–8732

    PubMed  PubMed Central  CAS  Google Scholar 

  27. Hu J, Wu XF, Zhang QF, Gao MY, Qiu HF, Huang KK, Feng SH, Wang TT, Yang Y, Liu ZL, Zhao B (2018) Langmuir 34:2685–2691

    PubMed  CAS  Google Scholar 

  28. Abdollatif SD, Hamideh S, Majid F (2019) N, Meissam. Ultrason Sonochem 58:104616

    Google Scholar 

  29. Zhou Y, Shen Y (2018) Electrochem Commun 90:106–110

    Google Scholar 

  30. Amanda CG, Eduardo BF, Vanine VSDB, Jose JL, Germano TF (2017) J Electroanal Chem 793:188–196

    Google Scholar 

  31. Li DN, He YM, Feng JJ, Zhang QL, Zhang L, Wu L, Wang AJ (2018) J Colloid Interface Sci 516:476–483

    PubMed  CAS  Google Scholar 

  32. Xia Q, Zhang L, Zhao Z, Li C (2017) J Colloid Interface Sci 506:135–143

    PubMed  CAS  Google Scholar 

  33. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun ZZ, Slesarev A, Alemany LB, Lu W, Tour JM (2010) ACS Nano 4:4806–4814

    PubMed  CAS  Google Scholar 

  34. Kakaei K, Dorraji M (2014) Electrochim Acta 143:207–215

    CAS  Google Scholar 

  35. Chen SS, Yang ZZ, Wang AJ, Fang KM, Feng JJ (2017) J Colloid Interface Sci 509:10–17

    PubMed  Google Scholar 

  36. Zhang Y, Gao F, Song P, Wang J, Guo J, Shiraishi Y, Du YK (2019) ACS Sustainable Chem Eng 7:3176–3184

    CAS  Google Scholar 

  37. Sun X, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, Dai HJ (2008) Nano Research 1:203–212

    PubMed  PubMed Central  CAS  Google Scholar 

  38. Zhang HC, Shang YY, Zhang T, Zhuo KL, Wang JJ (2017) Sens Actuators B 242:492–501

    CAS  Google Scholar 

  39. Guo HL, Wang XF, Qian QY, Wang FB, Xia XH (2009) ACS Nano 3:2653–2659

    PubMed  CAS  Google Scholar 

  40. Dutta A, Ouyang J (2015) ACS Catal 5:1371–1380

    CAS  Google Scholar 

  41. Chen X, Wu G, Chen J, Chen X, Xie Z, Wang X (2017) J Am Chem Soc 133:3693–3695

    Google Scholar 

  42. Wang XY, Zhang JC, Zhu H (2011) Chin J Catal 32:74–79

    Google Scholar 

  43. Xu H, Yan B, Zhang K, Zhang J, Li S, Wang C, Xiong Z, Shiraishi Y, Du Y, Yang P (2017) ACS Sustainable Chem Eng 5:10490–10498

    CAS  Google Scholar 

  44. Huang WJ, Kang XL, Xu C, Zhou J, Deng J, Li Y, Cheng S (2018) Adv Mater 30:1706962

    Google Scholar 

  45. Ren GH, Liu YJ, Wang WG, Wang MQ, Zhang ZC, Liang Y, Wu SS, Shen J (2018) ACS Appl Nano Mater 1:3226–3235

    CAS  Google Scholar 

  46. Nguyen ST, Law HM, Nguyen HT, Kristian N, Wang SY, Chan SH, Wang X (2009) Appl Catal, B 91:507–515

    CAS  Google Scholar 

  47. Zhang YY, Yi QF, Chu H, Nie HD (2017) J Fuel Chem Technol 45:475–483

    CAS  Google Scholar 

  48. Suo Y, Zhuang L, Lu J (2007) Angew Chem 46:2862–2864

    CAS  Google Scholar 

  49. Xu H, Yan B, Zhang K, Wang J, Li S, Wang C, Xiong Z, Shiraishi Y, Wang YDP (2017) ACS Sustainable Chem Eng 5:10490–10498

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (21573059 and U1704251), and the “111” Project (No. D17007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hucheng Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1 (2461 KB DOCX)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Zhang, Y., Yan, F. et al. Insight into the Structures and Electrocatalytic Activities of PdAg Alloy on RGO in the Oxidation of Ethanol, Ethylene Glycol and Glycerol. Catal Lett 151, 1796–1804 (2021). https://doi.org/10.1007/s10562-020-03447-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03447-x

Keywords

Navigation