Skip to main content
Log in

Role of Metal Oxides in Cu-Based Catalysts with NaBH4 Reduction for the Synthesis of Methanol from CO2/H2

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Cu/ZnO catalyst was prepared with NaBH4 reduction instead of high temperature H2 reduction to relieve the aggregation of Cu species. With the purpose of strengthening the interaction between Cu species and ZnO, some Al2O3, Y2O3, ZrO2 promoters are introduced to promote the synthesis of methanol from CO2/H2. The introduction of metal oxide promoters improves the dispersion of Cu species, decreases the onset reduction temperature and increases the quantity of basic sites. The Cu/ZnO/ZrO2 catalyst exhibited the highest CH3OH yield of 0.20 g mL−1 h−1 with CO2 conversion of 22.8% and CH3OH selectivity of 56.2% at 543 K. The catalytic activity is closely correlated to the exposed Cu surface area and a synergistic effect between the Cu species and metal oxides was proposed, which promoted the catalytic conversion of CO2 as well as H2 and simultaneously facilitated the migration of atomic hydrogen from Cu sites to metal oxides through spillover.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Han WB, Zhou G, Zhang QT, Pan HW, Liu D (2020) Fuel 266:116966

    CAS  Google Scholar 

  2. Olah GA, Goeppert A, Prakash GKS (2009) J Org Chem 74:487

    CAS  PubMed  Google Scholar 

  3. Olah GA, Prakash GKS, Goeppert A (2011) J Am Chem Soc 133:12881

    CAS  PubMed  Google Scholar 

  4. Wang W, Wang S, Ma X, Gong J (2011) Chem Soc Rev 40:3703

    CAS  PubMed  Google Scholar 

  5. Pori M, Arčon I, Jurković DL, Marinšek M, Dražić G, Likozar B, Orel ZC (2019) Catal Lett 149:1427

    CAS  Google Scholar 

  6. Martin O, Perez-Ramirez J (2013) Catal Sci Technol 3:3343

    CAS  Google Scholar 

  7. Cao A, Lu R, Veser G (2010) Phys Chem Chem Phys 12:13499

    CAS  PubMed  Google Scholar 

  8. Zhu S, Gao X, Zhu Y, Fan W, Wang J, Li Y (2015) Catal Sci Technol 5:1169

    CAS  Google Scholar 

  9. Dong XS, Li F, Zhao N, Xiao FK, Wang JW, Tan YS (2016) Appl Catal B 191:8

    CAS  Google Scholar 

  10. Dong XS, Li F, Zhao N, Tan YS, Wang JW, Xiao FK (2017) Chin J Catal 28:717

    Google Scholar 

  11. Dong XS, Li F, Zhao N, Tan YS, Wang JW, Xiao FK (2017) Catal Lett 147:1235

    CAS  Google Scholar 

  12. Nakamura J, Uchijima T, Kanai Y, Fujitani T (1996) Catal Today 28:223

    CAS  Google Scholar 

  13. Spencer MS (1999) Top Catal 8:259

    CAS  Google Scholar 

  14. Kurtz M, Bauer N, Büscher C, Wilmer H, Hinrichsen O, Becker R, Rabe S, Merz K, Driess M, Fischer RA, Muhler M (2004) Catal Lett 92:49

    CAS  Google Scholar 

  15. Kowalik P, Antoniak-Jurak K, Próchniak W, Wiercioch P, Konkol M, Bicki R, Michalska K, Walczak M (2017) Catal Lett 147:1422

    Google Scholar 

  16. Behrens M, Studt F, Kasatkin I, Kühl S, Hävecker M, Pedersen FA, Zander S, Girgsdies F, Kurr P, Kniep BL, Tovar M, Fischer RW, Nørskov JK, Schlögl R (2012) Science 336:893

    CAS  PubMed  Google Scholar 

  17. Liu XM, Lu GQ, Yan ZF, Beltramini J (2003) Ind Eng Chem Res 42:6518

    CAS  Google Scholar 

  18. Lim HW, Park MJ, Kang SH, Chae HJ, Bae JW, Jun KW (2009) Ind Eng Chem Res 48:10448

    CAS  Google Scholar 

  19. Bonura G, Cordaro M, Cannilla C, Arena F, Frusteri F (2014) Appl Catal B 152–153:152

    Google Scholar 

  20. Natesakhawat S, Lekse JW, Baltrus JP, Ohodnicki PR, Howard BH, Deng X, Matranga C (2012) ACS Catal 2:1667

    CAS  Google Scholar 

  21. Arena F, Italiano G, Barbera K, Bordiga S, Bonura G, Spadaro L, Frusteri F (2008) Appl Catal A 350:16

    CAS  Google Scholar 

  22. Gao P, Li F, Zhan HJ, Zhao N, Xiao FK, Wei W, Zhong LS, Wang H, Sun YH (2013) J Catal 298:51

    CAS  Google Scholar 

  23. Clancy P, Breen JP, Ross JRH (2007) Catal Today 127:291

    CAS  Google Scholar 

  24. Venugopal A, Palgunadi J, Deog JK, Joo OS, Shin CH (2009) J Mol Catal A 302:20

    CAS  Google Scholar 

  25. Umegaki T, Kojima Y, Omata K (2015) Materials 8:7738

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Xiao J, Mao DS, Guo XM, Yu J (2015) Appl Surf Sci 338:146

    CAS  Google Scholar 

  27. Arena F, Mezzatesta G, Zafarana G, Trunfio G, Frusteri F, Spadaro L (2013) J Catal 300:141

    CAS  Google Scholar 

  28. Bansode A, Tidona B, Rohrb PR, Urakawa A (2013) Catal Sci Technol 3:767

    CAS  Google Scholar 

  29. Grabowski R, Słoczyński J, Śliwa M, Mucha D, Socha RP, Lachowska M, Skrzypek J (2011) ACS Catal 1(4):266

    CAS  Google Scholar 

  30. Samson K, Śliwa M, Socha RP, Marek KG, Mucha D, Zbik DR, Paul JF, Mikołajczyk MR, Grabowski R, Słoczyński J (2014) ACS Catal 4:3730

    CAS  Google Scholar 

  31. Yang RQ, Yu XC, Zhang Y, Li WW, Tsubaki N (2008) Fuel 87:443

    CAS  Google Scholar 

  32. Behrens M (2009) J Catal 267:24

    CAS  Google Scholar 

  33. Baltes C, Vukojevic S, Schüth F (2008) J Catal 258:334

    CAS  Google Scholar 

  34. Gao P, Li F, Xiao FK, Zhao N, Wei W, Zhong LS, Sun YH (2012) Catal Today 194:9

    CAS  Google Scholar 

  35. Lin YL, Wang XQ, Hao JM, Ning P, Qu GF, Tang LH, Xie YB, Du C, He YH (2009) Catal Commun 118:51

    Google Scholar 

  36. Gao P, Li F, Xiao FK, Zhao N, Sun NN, Wei W, Zhong LS, Sun YH (2012) Catal Sci Technol 2:1447

    CAS  Google Scholar 

  37. Zhu YF, Kong X, Cao DB, Cui JL, Zhu YL, Li YW (2014) ACS Catal 4:3675

    CAS  Google Scholar 

  38. Zhu SH, Gao XQ, Zhu YL, Zhu YF, Zheng HY, Li YW (2013) J Catal 303:70

    CAS  Google Scholar 

  39. Kannan S, Dubey A, Knozinger H (2005) J Catal 231(2):381

    CAS  Google Scholar 

  40. Zhang YD, Li CT, Zhu YC, Du XY, Lyu Y, Li SH, Zhai YB (2020) Fuel 276:118099

    CAS  Google Scholar 

  41. Li YX, Han W, Wang RX, Weng LT, Ana SL, Miguel AB, Wang QY, Yeung KL (2020) Appl Catal B 275:119121

    CAS  Google Scholar 

  42. Hernández WY, Tsampas MN, Zhao C, Boreave A, Bosselet F, Vernoux P (2015) Catal Today 258:525

    Google Scholar 

  43. Li F, Dong XS, Zhao N, Xiao FK (2020) Catal Lett 150(4):922

    CAS  Google Scholar 

  44. Li ZQ, Meng M, Zha YQ, Dai FF, Hu TD, Xie YN, Zhang J (2012) Appl Catal B 121–122:65

    Google Scholar 

  45. Sloczynski J, Grabowski R, Olszewski P, Kozlowska A, Stoch J, Lachowska M, Skrzypek J (2006) Appl Catal A310:127

    Google Scholar 

  46. Witoon T, Chalorngtham J, Dumrongbunditkul P, Chareonpanich M, Limtrakul J (2015) Chem Eng J 293:327

    Google Scholar 

  47. Wu GD, Wang XL, Wei W, Sun YH (2010) Appl Catal A 377:107

    CAS  Google Scholar 

  48. Guo XM, Mao DS, Lu GZ, Wang S, Wu GS (2011) J Mol Catal A 345:60

    CAS  Google Scholar 

  49. Rhodes MD, Bell AT (2005) J Catal 233:198

    CAS  Google Scholar 

  50. Guo XM, Mao DS, Lu GZ, Wang S, Wu GS (2010) J Catal 27:178

    Google Scholar 

  51. Sun Q, Zhang YL, Chen HY, Deng JF, Wu D, Chen SY (1997) J Catal 167:92

    CAS  Google Scholar 

  52. Li L, Mao DS, Yu J, Guo XM (2015) J Power Sour 279:394

    CAS  Google Scholar 

  53. Zhang PP, Arakia Y, Feng XB, Li HJ, Fang Y, Chen F, Shi L, Peng XB, Yoneyama Y, Yang GH, Tsubaki N (2020) Fuel 268:117213

    CAS  Google Scholar 

  54. Suarez LM, Siemer N, Frenzel J, Marx D (2015) ACS Catal 5:4201

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51774198, 51904171), the Natural Science Foundation of Shandong Provenience (Grant No. ZR2019BEE067).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaosu Dong.

Ethics declarations

Conflict of interest

All authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, G., He, Z. & Dong, X. Role of Metal Oxides in Cu-Based Catalysts with NaBH4 Reduction for the Synthesis of Methanol from CO2/H2. Catal Lett 151, 1091–1101 (2021). https://doi.org/10.1007/s10562-020-03379-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03379-6

Keywords

Navigation