Skip to main content
Log in

Mesoporous Sn(IV) Doping DFNS Supported BaMnO3 Nanoparticles for Formylation of Amines Using Carbon Dioxide

  • Published:
Catalysis Letters Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In the present paper, Sn(IV) doping DFNS (SnD) supported nanoparticles of BaMnO3 (BaMnO3/SnD) and using as a catalyst for the N-formylation of amines by CO2 hydrogenation. In this catalyst, the SnD with the ratios of Si/Sn in the range of from 6 to 50 were obtained with method of direct hydrothermal synthesis (DHS) as well as the nanoparticles of BaMnO3 were on the surfaces of SnD in situ reduced. Scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray energy dispersive spectroscopy (EDS), and transmission electron microscopy (TEM) were utilized for characterizing the nanostructures BaMnO3/SnD. It is found that the nanostructures of BaMnO3/SnD can be a nominate due to its effective and novel catalytic behavior in N-formylation of amines through hydrogenation of CO2.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Dibenedetto A, Angelini A, Stufano P (2014) J Chem Technol Biotechnol 89:334–353

    CAS  Google Scholar 

  2. Low JX, Cheng B, Yu JG (2017) Appl Surf Sci 392:658–686

    CAS  Google Scholar 

  3. Boot-Handford ME, Abanades JC, Anthony EJ, Blunt MJ, Brandani S, Mac Dowell N, Fernandez JR, Ferrari MC, Gross R, Hallett JP, Haszeldine RS, Heptonstall P, Lyngfelt A, Makuch Z, Mangano E, Porter RTJ, Pourkashanian M, Rochelle GT, Shah N, Yao JG, Fennell PS (2014) Energy Environ Sci 7:130–189

    CAS  Google Scholar 

  4. Devens G, Moore TA, Moore AL (2009) Acc Chem Res 42:1890–1898

    Google Scholar 

  5. Morris AJ, Meyer GJ, Fujita E (2009) Acc Chem Res 42:1983–1994

    CAS  PubMed  Google Scholar 

  6. Morimoto T, Nishiura C, Tanaka M, Rohacova J, Nakagawa Y, Funada Y, Koike K, Yamamoto Y, Shishido S, Kojima T, Saeki T, Ozeki T, Ishitani O (2013) J Am Chem Soc 135:13266–13269

    CAS  PubMed  Google Scholar 

  7. Sadeghzadeh SM, Zhiani R, Emrani S (2018) Appl Organomet Chem 32:e3941

    Google Scholar 

  8. Benson EE, Kubiak CP, Sathrum AJ, Smieja JM (2009) Chem Soc Rev 38:89–99

    CAS  PubMed  Google Scholar 

  9. Sadeghzadeh SM (2015) RSC Adv 5:68947–68952

    CAS  Google Scholar 

  10. Thoi VS, Chang CJ (2011) Chem Commun 47:6578–6580

    CAS  Google Scholar 

  11. Sadeghzadeh SM (2016) Catal Sci Technol 6:1435–1441

    CAS  Google Scholar 

  12. Qu Y, Duan X (2013) Chem Soc Rev 42:2568–2580

    CAS  PubMed  Google Scholar 

  13. Chowdhury AH, Chowdhury IH, Biswas S, Islam SKM (2020) Mol Catal 493:111050

    Google Scholar 

  14. Mu J, Liu J, Ran Z, Arif M, Gao M, Wang C, Ji S (2020) Ind Eng Chem Res 59:6543–6555

    CAS  Google Scholar 

  15. Wang G, Jiang M, Ji G, Sun Z, Li C, Yan L, Ding Y (2020) ACS Sustain Chem Eng 8:5576–5583

    CAS  Google Scholar 

  16. Dai X, Shi F (2020) Curr Opin Green Sustain Chem 22:1–6

    Google Scholar 

  17. Nale DB, Bhanage BM (2016) Synlett 27:1413–1417

    CAS  Google Scholar 

  18. Lv H, Xing Q, Yue C, Lei Z, Li F (2016) Chem Commun 52:6545–6548

    CAS  Google Scholar 

  19. González-Sebastián L, Flores-Almo M, García J (2015) J Organomet 34:763–769

    Google Scholar 

  20. Nguyen TVQ, Yoo WJ, Kobayashi S (2015) Angew Chem Int Ed 54:9209–9212

    CAS  Google Scholar 

  21. Jacquet O, Frogneux X, Gomes CDN, Contat T (2013) Chem Sci 4:2127–2131

    CAS  Google Scholar 

  22. Jacquet O, Gomes CDN, Ephritikhine M, Contat T (2013) ChemCatChem 5:117–120

    CAS  Google Scholar 

  23. Cui X, Zhang Y, Deng Y, Shi F (2014) Chem Commun 50:189–191

    CAS  Google Scholar 

  24. Ju P, Chen J, Chen A, Chen L, Yu Y (2017) ACS Sustain Chem Eng 5:2516–2528

    CAS  Google Scholar 

  25. Mitsudome T, Urayama T, Fujita S, Maeno Z, Mizugaki T, Jitsukawa K, Kaneda K (2017) ChemCatChem 9:3632–3636

    CAS  Google Scholar 

  26. Kumar S, Jain SL (2014) RSC Adv 4:64277–64279

    CAS  Google Scholar 

  27. Song QW, Zhou ZH, He LN (2017) Green Chem 19:3707–3728

    CAS  Google Scholar 

  28. Gholamrezaei S, Salavati-Niasari M (2018) Ultrason Sonochem A 40:651–663

    CAS  Google Scholar 

  29. Melo Jorge ME, Nunes MR, Silva Maria R, Sousa D (2005) Chem Mater 17:2069–2075

    Google Scholar 

  30. Isasi PH, Lopes ME, Nunes MR, Melo Jorge ME (2009) J Phys Chem Solids 70:405–411

    CAS  Google Scholar 

  31. Sakintuna B, Lamari-Darkrim F, Hirscher M (2007) Int J Hydrog Energy 32:1121–1140

    CAS  Google Scholar 

  32. Fukabori A, Awaka J, Takahashi Y, Kijima N, Hayakawa H (2008) J. Akimoto. Chem Lett 37:978–979

    CAS  Google Scholar 

  33. Haghiri-Gosnet AM, Renard JP (2003) J Phys D 36:127–130

    Google Scholar 

  34. Battle PD, Gibb TC, Jones CW (1988) J Solid State Chem 74:60–67

    CAS  Google Scholar 

  35. Zhu D, Zhu H, Zhang Y (2002) Appl Phys Lett 80:1634–1636

    CAS  Google Scholar 

  36. Sakai H (2011) Phys Rev Lett 107:137601

    CAS  PubMed  Google Scholar 

  37. Ouyang J (2019) Nano Mater Sci 1:77–90

    Google Scholar 

  38. Masjedi-Arani M, Salavati-niasari M (2018) Ultrason Sonochem 43:136–145

    CAS  PubMed  Google Scholar 

  39. Masjedi-Arani M, Salavati-niasari M (2016) Ultrason Sonochem 29:226–235

    CAS  PubMed  Google Scholar 

  40. Corma A, Navarro Ma T, Renz M (2003) J Catal 219:242–246

    CAS  Google Scholar 

  41. Chaudhari K, Das TK, Rajmohanan PR, Lazar K, Sivasanker S, Chandwadkar AJ (1999) J Catal 183:281–291

    CAS  Google Scholar 

  42. Zhang Y, Wang J, Zhu H, Tu T (2018) Chem Asian J 13:3018–3021

    CAS  PubMed  Google Scholar 

  43. Zhang FH, Liu C, Li W, Tian GL, Xie JH, Zhou QL (2018) Chin J Chem 36:1000–1002

    CAS  Google Scholar 

  44. Zhiani R, Saadati SM, Zahedifar M, Sadeghzadeh SM (2018) Catal Lett 148:2487–2500

    CAS  Google Scholar 

  45. Luo X, Zhang H, Ke Z, Wu C, Guo S, Wu Y, Yu B, Liu Z (2018) Sci China Chem 61:725–731

    CAS  Google Scholar 

  46. Li XD, Xia SM, Chen KH, Liu XF, Li HR, He LN (2018) Green Chem 20:4853–4858

    CAS  Google Scholar 

  47. Yang Z, Wang H, Ji G, Yu X, Chen Y, Liu X, Wu C, Liu Z (2017) New J Chem 41:2869–2872

    CAS  Google Scholar 

  48. Daw P, Chakraborty S, Leitus G, Diskin-Posner Y, Ben-David Y, Milstein D (2017) ACS Catal 7:2500–2504

    CAS  Google Scholar 

  49. Liu Z, Yang Z, Ke Z, Yu X, Zhang H, Yu B, Zhao Y, Liu Z (2018) New J Chem 42:13933–13937

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No.: 51701173) and the Key Scientific and Technological Research Project of Henan Province (Grant No.: 202102310298).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aili Sun or Rahele Zhiani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Wang, L., Sun, A. et al. Mesoporous Sn(IV) Doping DFNS Supported BaMnO3 Nanoparticles for Formylation of Amines Using Carbon Dioxide. Catal Lett 151, 573–581 (2021). https://doi.org/10.1007/s10562-020-03307-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03307-8

Keywords

Navigation