Skip to main content
Log in

Catalytic Isomerization of α-Pinene Epoxide Over a Natural Zeolite

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Isomerization of α-pinene epoxide was carried out over a Colombian natural zeolite as potential geocatalyst with heulandite, chabazite and clipnotilolite as main crystallographic phases; the heulandite was identified as the active phase. Over synthetic zeolites, isomerization of α-pinene epoxide depended on Si/Al ratio, unit cell and the kind of structure. The best solvent was toluene and not isomerization activity was observed in presence of solvents with carboxyl groups. Complete α-pinene epoxide conversion and 45% selectivity to campholenic aldehyde were obtained at 70 °C, with fencholenic aldehyde, carveol, and p-cymene as main by-products. Decrease of activity of natural zeolite was associated with loss of acid sites. A reaction mechanism based on experimental and computational data was proposed including adsorption of α-pinene epoxide on Fe or Al sites of the natural zeolite; a reaction rate constant of 4.02 × 10–4 mol g−1 min−1 was estimated from a pseudo homogeneous kinetic model.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Magdziarz A, Gajek M, Nowak-Woźny D et al (2018) Renew Energy 128:446–459

    CAS  Google Scholar 

  2. Deng L, Ye J, Jin X et al (2017) Energy Procedia 142:401–406

    CAS  Google Scholar 

  3. Park J, Meng J, Lim K, Rojas O, Park S (2013) J Anal Appl Pyrolysis 100:199–206

    CAS  Google Scholar 

  4. Breitmaier E (1997) Common fragrance and flavor materials

  5. Kim M, Sowndhararajan K, Park S et al (2018) Eur J Integr Med 17:33–39

    Google Scholar 

  6. Qu L, Yu H, Yu F et al (2018) Appl Surf Sci 453:271–279

    CAS  Google Scholar 

  7. Becerra J, Villa A (2018) Chem Eng Technol 41:124–133

    CAS  Google Scholar 

  8. Tao P, Lu X, Zhang H et al (2019) Mol Catal 463:8–15

    CAS  Google Scholar 

  9. Meyer-Waßewitz J, Elyorgun JD, Conradi C et al (2018) Chem Eng Res Des 134:463–475

    Google Scholar 

  10. Patil M, Yadav M, Jasra R (2007) J Mol Catal A 277:72–80

    CAS  Google Scholar 

  11. Tang B, Lu X, Zhou D et al (2012) Catal Commun 21:68–71

    CAS  Google Scholar 

  12. Liebens A, Mahaim C, Holderich W (1997) Heterog Catal Fine Chem Iv 108:587–594

    CAS  Google Scholar 

  13. Bruno S, Gomes A, Abrantes M et al (2015) J Organomet Chem 799–800:179–183

    Google Scholar 

  14. Frater G, Bajgrowicz J (1998) Optical isomers of derivatives of campholenic aldehyde. Eur Pat Appl

  15. Medina F, Tichit D, Pe J (2007) App Catal B 70:577–584

    Google Scholar 

  16. Schulze K, Uhlig H (1989) Chem Mon 120:547–559

    CAS  Google Scholar 

  17. Guo J, Zhang R, Ouyang J et al (2018) Chem Cat Chem 10:5496–5504

    CAS  Google Scholar 

  18. Kaminska J, Schwegler M, Hoefnagel A et al (1992) Recl des Trav Chim des Pays-Bas 111:432–437

    CAS  Google Scholar 

  19. Stekrova M, Kumar N, Aho A et al (2014) Appl Catal A 470:162–176

    CAS  Google Scholar 

  20. Shcherban N, Barakov R, Mäki-Arvela P et al (2018) Appl Catal A 560:236–247

    CAS  Google Scholar 

  21. Sidorenko A, Kravtsova A, AhobI A et al (2018) Mol Catal 448:18–29

    CAS  Google Scholar 

  22. Timofeeva M, Panchenko V, Hasan Z et al (2014) Catal A Gen 469:427–433

    CAS  Google Scholar 

  23. Ravasio N, Zaccheria F, Gervasini A et al (2008) Catal Commun 9:1125–1127

    CAS  Google Scholar 

  24. Villa-Holguín A, Sánchez-Velandia J (2018) Rev Colomb Química 47:13–23

    Google Scholar 

  25. Pitínová-Štekrová M, Eliášová P, Weissenberger T et al (2018) Catal Sci Technol 8:4690–4701

    Google Scholar 

  26. Wang S, Peng Y (2010) Chem Eng J 156:11–24

    CAS  Google Scholar 

  27. Wibowo E (2017) Procedia Eng 170:8–13

    CAS  Google Scholar 

  28. Ates A, Akgül G (2016) Powder Technol 287:285–291

    CAS  Google Scholar 

  29. Wang S, Ariyanto E (2007) J Colloid Interface Sci 314:25–31

    CAS  PubMed  Google Scholar 

  30. Gelves J, Dorkis L, Márquez M et al (2018) Catal Today 320:112–122

    Google Scholar 

  31. Merissa S, Fitriani P, Iskandar F, Abdullah M, Khairurrijal (2013) AIP Conf. Proc 1554:131–134

    CAS  Google Scholar 

  32. Wijayati N, Utomo A (2016) Int J Chem Eng Appl 7:138–141

    CAS  Google Scholar 

  33. Sharma P, Singh G et al (2009) J Colloid Interface Sci 332:298–308

    CAS  PubMed  Google Scholar 

  34. Bates SA, Verma AA, Paoulucci C et al (2014) J Catal 312:87–97

    CAS  Google Scholar 

  35. Sánchez-Velandia J, Villa-Holguín A, Gelves J et al (2019) Microporous Mesoporous Mater 287:114–123

    Google Scholar 

  36. Steven J, Khasanov A, Miller J et al (2005) Mössbauer mineral handbook. Mössbauer Effect Data Center, Asheville

    Google Scholar 

  37. Goldanskii V, Herber RH (1968) Chemical application of the Móssbauer spectroscopy. Academic Press, New York

    Google Scholar 

  38. Giannini C, Ladisa M, Altamura D et al (2016) Crystals 6(8):87

    Google Scholar 

  39. Gelves JF, Gallego GS, Marquez MA (2016) Microporous Mesoporous Mater 235:9–19

    CAS  Google Scholar 

  40. Alberti A (1973) Mineral Petrol 19(3):173–184

    CAS  Google Scholar 

  41. Passaglia E, Sheppard RA (2011) Rev Mineral Geochem 45(1):69–116

    Google Scholar 

  42. Viczian I (2013) Földvári, Mária: Occasional Papers of the Geological Institute of Hungary, vol 213, Budapest, 2011

  43. Conte M, Lopez-Sanchez JA et al (2012) Catal Sci Technol 2(1):105–112

    CAS  Google Scholar 

  44. Sui GJ, Sun QL, Wu D et al (2016) RSC Adv 6(68):63493–63496

    CAS  Google Scholar 

  45. Dalton Research Group. Dielectric constants of common organic solvents. Dep. Chem. Univ. Washington. 1. https://depts.washington.edu/eooptic/linkfiles/dielectric_chart%5B1%5D.pdf, Accessed 18 Dec 2018

  46. Anslyn E, Dougherty D (2006) Modern physic organic chemistry. Remington Farmacia 91.

  47. Wishart D, Arndt D, Pon A et al (2015) T3DB: the toxic exposome database. Nucleic Acids Res 43:D928–D934

    CAS  PubMed  Google Scholar 

  48. Value of pKaTable, University of Massachusetts. Available on:owl.oit.umass.edu. Accessed 14 Jan 2019

  49. Riddick J, Bunger W, Sakano T (1985) Techniques of chemistry, 4th ed, vol II. Organic solvents, p. 309

  50. Kilner C, Halcrow A (2006) Crystal structure communications. Acta Crystallogr C C62:M437–M439

    CAS  Google Scholar 

  51. Chan A, Harvey B, Hoggard P (2013) Photochem Photobiol Sci 12(9):1680–1687

    CAS  PubMed  Google Scholar 

  52. Tsai W (2017) Toxics 5(4):23–35

    PubMed Central  Google Scholar 

  53. Coelho J, de Meireles A, da Silva RK et al (2012) Appl Catal A 443–444:125–132

    Google Scholar 

  54. Stekrova M, Kubu M, Shamzhy M et al (2018) Catal Sci Technol 9:2488–2501

    Google Scholar 

  55. Sánchez-Velandia J, Villa A (2019) Appl Catal A 580:17–27

    Google Scholar 

  56. Sánchez-Velandia J, Agudelo-Cifuentes A, Villa A (2019) React Kinet Mech Catal 128(2):1005–1028

    Google Scholar 

  57. Timofeeva M, Panchenko V, Hasan Z et al (2014) Appl Catal A 469:427–433

    CAS  Google Scholar 

  58. Davis E, Davis R (2003) Fundamentals of chemical reaction engineering. McGraw-Hili Chemical Engineering Series, vol. 43

  59. Casado J, Lopez-Quintela MA, Lorenzo-Barral FM (1986) J Chem Educ 63:450

    CAS  Google Scholar 

  60. Kinetic model hydroformylation. Departament of Chemistry, Texas A&M University. Available on: https://www.chem.tamu.edu/rgroup/marcetta/chem462/lectures/Cho-Sanchez-Hydroformylation.pdf. Accessed 01 May 2019

  61. Vicevic M, Boodhoo K, Scott K (2007) Chem Eng J 133:31–41

    CAS  Google Scholar 

  62. Saminen E, Maki-Arvela P, Virtanen P et al (2014) Ind Eng Chem Res 53:20107–20115

    Google Scholar 

  63. Maki-Arvela P, Scherban N, Lozachemeur C et al (2019) Catal Lett 149:203–214

    CAS  Google Scholar 

  64. Heulandite phase A: General Information. Springer materials. https://materials.springer.com/isp/crystallographic/docs/sd_1602809. Accessed 12 Dec 2018

Download references

Acknowledgements

The authors acknowledge to COLCIENCIAS and Universidad de Antioquia (UdeA) for the financial support through the contract 059-2016. J.E. S.-V. acknowledges to COLCIENCIAS for his fellowship (call 785) and the Instructor program from UdeA. J.F-G acknowledges to COLCIENCIAS for his fellowship (call 528 -2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aída-Luz Villa.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Velandia, J.E., Gelves, J.F., Márquez, M.A. et al. Catalytic Isomerization of α-Pinene Epoxide Over a Natural Zeolite. Catal Lett 150, 3132–3148 (2020). https://doi.org/10.1007/s10562-020-03225-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03225-9

Keywords

Navigation