Skip to main content
Log in

Lipase-Catalyzed Highly Efficient 1,6-Conjugated Addition for Synthesis of Triarylmethanes

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Lipase from porcine pancreas (PPL) is first reported to catalyze direct 1,6-conjugated addition for synthesis of triarylmethanes using p-quinonemethides (p-QMs) and 2-naphthols. The catalytic activity of PPL was evaluated through investigating the solvent, the ratio of substrates, the enzyme loading and the temperature of the enzyme-catalyzed reactions. The present method proves to be environmentally friendly and efficient in terms of high yield, green catalyst and simple synthesis method.

GraphicAbstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Duxbury DF (1993) The photochemistry and photophysics of triphenylmethane dyes in solid and Liquid-Media. Chem Rev 93(1):381–433

    Article  CAS  Google Scholar 

  2. Shiri M, Zolfigol MA, Kruger HG, Tanbakouchian Z (2010) Bis- and trisindolylmethanes (BIMs and TIMs). Chem Rev 110(4):2250–2293

    Article  CAS  Google Scholar 

  3. Wang TL, Hong TT, Huang Y, Su HM, Wu F, Chen Y et al (2015) Fluorescein derivatives as bifunctional molecules for the simultaneous inhibiting and labeling of FTO protein. J Am Chem Soc 137(43):13736–13739

    Article  CAS  Google Scholar 

  4. Al-Qawasmeh RA, Lee Y, Cao MY, Gu XP, Vassilakos A, Wright JA et al (2004) Triaryl methane derivatives as antiproliferative agents. Bioorg Med Chem Lett 14(2):347–350

    Article  CAS  Google Scholar 

  5. Mibu N, Yokomizo K, Uyeda M, Sumoto K (2005) Synthesis and antiviral activities of some 4,4’- and 2,2’-dihydroxytriphenylmethanes. Chem Pharm Bull 53(9):1171–1174

    Article  CAS  Google Scholar 

  6. Mereyala HB, Sambaru K (2005) Synthesis of triphenylmethane derivative: bisacodyl. Indian J Chem B 44(3):615–617

    Google Scholar 

  7. Parai MK, Panda G, Chaturvedi V, Manju YK, Sinha S (2008) Thiophene containing triarylmethanes as antitubercular agents. Bioorg Med Chem Lett 18(1):289–292

    Article  CAS  Google Scholar 

  8. Singh P, Manna SK, Jana AK, Saha T, Mishra P, Bera S et al (2015) Thiophene containing trisubstitutedmethanes [TRSMs] as identified lead against Mycobacterium tuberculosis. Eur J Med Chem 95:357–368

    Article  CAS  Google Scholar 

  9. Manabe K, Mori Y, Wakabayashi T, Nagayama S, Kobayashi S (2000) Organic synthesis inside particles in water: lewis acid-surfactant-combined catalysts for organic reactions in water using colloidal dispersions as reaction media. J Am Chem Soc 122(30):7202–7207

    Article  CAS  Google Scholar 

  10. Wilsdorf M, Leichnitz D, Reissig HU (2013) Trifluoromethanesulfonic acid catalyzed friedel-crafts alkylations of 1,2,4-trimethoxybenzene with aldehydes or benzylic alcohols. Org Lett 15(10):2494–2497

    Article  CAS  Google Scholar 

  11. Bacci JP, Kearney AM, Van Vranken DL (2005) Efficient two-step synthesis of 9-aryl-6-hydroxy-3H-xanthen-3-one fluorophores. J Org Chem 70(22):9051–9053

    Article  CAS  Google Scholar 

  12. Nambo M, Crudden CM (2015) Recent advances in the synthesis of triarylmethanes by transition metal catalysis. ACS Catal 5(8):4734–4742

    Article  CAS  Google Scholar 

  13. Kapoor M, Gupta MN (2012) Lipase promiscuity and its biochemical applications. Process Biochem 47(4):555–569

    Article  CAS  Google Scholar 

  14. Aouf C, Durand E, Lecomte J, Figueroa-Espinoza MC, Dubreucq E, Fulcrand H et al (2014) The use of lipases as biocatalysts for the epoxidation of fatty acids and phenolic compounds. Green Chem 16(4):1740–1754

    Article  CAS  Google Scholar 

  15. Kirchner G, Scollar MP, Klibanov AM (1985) resolution of racemic mixtures via lipase catalysis in organic-solvents. J Am Chem Soc 107(24):7072–7076

    Article  CAS  Google Scholar 

  16. Bornscheuer UT, Kazlauskas RJ (2004) Catalytic promiscuity in biocatalysis: using old enzymes to form new bonds and follow new pathways. Angew Chem Int Ed 43(45):6032–6040

    Article  CAS  Google Scholar 

  17. Jaeger KE, Reetz MT (1998) Microbial lipases form versatile tools for biotechnology. Trends Biotechnol 16(9):396–403

    Article  CAS  Google Scholar 

  18. Svedendahl M, Hult K, Berglund P (2005) Fast carbon-carbon bond formation by a promiscuous lipase. J Am Chem Soc 127(51):17988–17989

    Article  CAS  Google Scholar 

  19. Torre O, Alfonso I, Gotor V (2004) Lipase catalysed Michael addition of secondary amines to acrylonitrile. ChemCommun 15:1724–1725

    Google Scholar 

  20. Wu WB, Xu JM, Wu Q, Lv DS, Lin XF (2006) Promiscuous acylases-catalyzed Markovnikov addition of N-heterocycles to vinyl esters in organic media. Adv Synth Catal 348(4–5):487–492

    Article  CAS  Google Scholar 

  21. Carboni-Oerlemans C, de Maria PD, Tuin B, Bargeman G, van der Meer A, van Gemert R (2006) Hydrolase-catalysed synthesis of peroxycarboxylic acids: biocatalytic promiscuity for practical applications. J Biotechnol 126(2):140–151

    Article  CAS  Google Scholar 

  22. Svedendahl M, Carlqvist P, Branneby C, Allner O, Frise A, Hult K et al (2008) Direct epoxidation in candida antarctica lipase b studied by experiment and theory. ChemBioChem 9(15):2443–2451

    Article  CAS  Google Scholar 

  23. Branneby C, Carlqvist P, Magnusson A, Hult K, Brinck T, Berglund P (2003) Carbon-carbon bonds by hydrolytic enzymes. J Am Chem Soc 125(4):874–875

    Article  CAS  Google Scholar 

  24. Lai YF, Zheng H, Chai SJ, Zhang PF, Chen XZ (2010) Lipase-catalysed tandem Knoevenagel condensation and esterification with alcohol cosolvents. Green Chem 12(11):1917–1918

    Article  CAS  Google Scholar 

  25. He YH, Li HH, Chen YL, Xue Y, Yuan Y, Guan Z (2012) Chymopapain-catalyzed direct asymmetric aldol reaction. Adv Synth Catal 354(4):712–719

    Article  CAS  Google Scholar 

  26. Wang JL, Li X, Xie HY, Liu BK, Lin XF (2010) Hydrolase-catalyzed fast Henry reaction of nitroalkanes and aldehydes in organic media. J Biotechnol 145(3):240–243

    Article  CAS  Google Scholar 

  27. Li C, Feng XW, Wang N, Zhou YJ, Yu XQ (2008) Biocatalytic promiscuity: the first lipase-catalysed asymmetric aldol reaction. Green Chem 10(6):616–618

    Article  CAS  Google Scholar 

  28. Xie ZB, Wang N, Jiang GF, Yu XQ (2013) Biocatalytic asymmetric aldol reaction in buffer solution. Tetrahedron Lett 54(8):945–948

    Article  CAS  Google Scholar 

  29. Zhang Y, Wang N, Xie ZB, Zhou LH, Yu XQ (2014) Ionic liquid as a recyclable and efficient medium for lipase-catalyzed asymmetric cross aldol reaction. J MolCatal B-Enzyme 110:100–110

    Article  CAS  Google Scholar 

  30. Li K, He T, Li C, Feng XW, Wang N, Yu XQ (2009) Lipase-catalysed direct Mannich reaction in water: utilization of biocatalytic promiscuity for C-C bond formation in a “one-pot” synthesis. Green Chem 11(6):777–779

    Article  CAS  Google Scholar 

  31. He T, Li K, Wu MY, Feng XW, Wang N, Wang HY et al (2010) Utilization of biocatalytic promiscuity for direct Mannich reaction. J Mol Catal B-Enzyme 67(3–4):189–194

    Article  CAS  Google Scholar 

  32. Zhou LH, Wang N, Chen GN, Yang Q, Yang SY, Zhang W et al (2014) Lipase-catalyzed highly diastereoselective direct vinylogous Michael addition reaction of alpha, alpha-dicyanoolefins to nitroalkenes. J Mol Catal B-Enzyme 109:170–177

    Article  CAS  Google Scholar 

  33. Zhou LH, Wang N, Zhang W, Xie ZB, Yu XQ (2013) Catalytical promiscuity of alpha-amylase: synthesis of 3-substituted 2H-chromene derivatives via biocatalytic domino oxa-Michael/aldol condensations. J Mol Catal B-Enzyme 91:37–43

    Article  CAS  Google Scholar 

  34. Zhang W, Wang N, Yang ZJ, Li YR, Yu Y, Pu XM et al (2017) Lipase-initiated tandem biginelli reactions via in situ-formed acetaldehydes in one pot: discovery of single-ring deep blue luminogens. Adv Synth Catal 359(19):3397–3406

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (Grant No. 2018YFA0901600). We also thank the Comprehensive Training Platform of Specialized Laboratory, College of Chemistry, Sichuan University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Na Wang or Xiao-Qi Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 234 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, ZJ., Wang, N., He, WX. et al. Lipase-Catalyzed Highly Efficient 1,6-Conjugated Addition for Synthesis of Triarylmethanes. Catal Lett 150, 1268–1276 (2020). https://doi.org/10.1007/s10562-019-03043-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-03043-8

Keywords

Navigation