Skip to main content
Log in

Ultrasound-Assisted β-Cyclodextrin Catalyzed One-Pot Cascade Synthesis of Pyrazolopyranopyrimidines in Water

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Ultrasound-assisted, mild and highly efficient route for the one-pot multicomponent reaction of ethyl acetoacetate, hydrazine hydrate, aromatic aldehydes and barbituric acid has been developed for the construction of bioactive heterocyclic moieties in a single molecular framework. The synthesis of tri-heterocyclic fused pyrazolopyranopyrimidines promoted by β-Cyclodextrin as a biomimetic catalyst and water as an eco-friendly reaction medium. This environmentally beningn protocol offers selective synthesis of pyrazolopyranopyrimidine derivatives without any side product with excellent yield in shorter duration. The reusability and recyclability of catalyst is carried out in simple way. Also, this method provides various advantages such as metal free synthesis, cost-effective catalyst, no column chromatography and offers easy isolation of products with gram scale synthesis.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bienayme H, Hulme C, Oddon G, Schmitt P (2000) Maximizing synthetic efficiency: multi-component transformations lead the way. Chem A Eur J 6:3321–3329

    CAS  Google Scholar 

  2. Balme G, Bossharth E, Monteiro N (2003) Pd-Assisted multicomponent synthesis of heterocycles. Eur J Org Chem 2003:4101–4111

    Google Scholar 

  3. Brase S, Gil C, Knepper K (2002) The recent impact of solid-phase synthesis on medicinally relevant benzoannelated nitrogen heterocycles. Bioorg Med Chem 10:2415–2437

    CAS  PubMed  Google Scholar 

  4. Domling A, Ugi I (2000) Multicomponent reactions with isocyanides. Angew Chem 39:3168–3210

    CAS  Google Scholar 

  5. Jiang D, Pan X, Li M, Gu Y (2014) 2-Methylindole as an indicative nucleophile for developing a three-component reaction of aldehyde with two different nucleophiles. ACS Comb Sci 16:287–292

    CAS  PubMed  Google Scholar 

  6. Li M, Taheri A, Liu M et al (2014) Three-component reactions of aromatic aldehydes and two different nucleophiles and their leaving ability-determined downstream conversions of the products. Adv Synth Catal 356:537–556

    CAS  Google Scholar 

  7. Wan J-P, Liu Y (2012) Recent advances in new multicomponent synthesis of structurally diversified 1,4-dihydropyridines. RSC Adv 2:9763

    CAS  Google Scholar 

  8. Brauch S, van Berkel SS, Westermann B (2013) Higher-order multicomponent reactions: beyond four reactants. Chem Soc Rev 42:4948

    CAS  PubMed  Google Scholar 

  9. Maleki A, Niksefat M, Rahimi J, Taheri-Ledari R (2019) Multicomponent synthesis of pyrano[2,3-d]pyrimidine derivatives via a direct one-pot strategy executed by novel designed copperated Fe3O4@polyvinyl alcohol magnetic nanoparticles. Mater Today Chem 13:110–120

    CAS  Google Scholar 

  10. Maleki A, Niksefat M, Rahimi J, Azadegan S (2019) Facile synthesis of tetrazolo[1,5-a]pyrimidine with the aid of an effective gallic acid nanomagnetic catalyst. Polyhedron 167:103–110

    CAS  Google Scholar 

  11. Taheri-Ledari R, Rahimi J, Maleki A (2019) Synergistic catalytic effect between ultrasound waves and pyrimidine-2,4-diamine-functionalized magnetic nanoparticles: applied for synthesis of 1,4-dihydropyridine pharmaceutical derivatives. Ultrason Sonochem 59:104737

    PubMed  Google Scholar 

  12. Hajizadeh Z, Maleki A (2018) Poly(ethylene imine)-modified magnetic halloysite nanotubes: a novel, efficient and recyclable catalyst for the synthesis of dihydropyrano[2,3-c]pyrazole derivatives. Mol Catal 460:87–93

    CAS  Google Scholar 

  13. Maleki A, Aghaei M (2017) Ultrasonic assisted synergetic green synthesis of polycyclic imidazo(thiazolo)pyrimidines by using Fe3O4@clay core–shell. Ultrason Sonochem 38:585–589

    CAS  PubMed  Google Scholar 

  14. Maleki A, Aghaei M (2017) Sonochemical rate enhanced by a new nanomagnetic embedded core/shell nanoparticles and catalytic performance in the multicomponent synthesis of pyridoimidazoisoquinolines. Ultrason Sonochem 38:115–119

    CAS  PubMed  Google Scholar 

  15. Maleki A, Rahimi J, Demchuk OM et al (2018) Green in water sonochemical synthesis of tetrazolopyrimidine derivatives by a novel core-shell magnetic nanostructure catalyst. Ultrason Sonochem 43:262–271

    CAS  PubMed  Google Scholar 

  16. Maleki A, Aghaei M, Hafizi-Atabak HR, Ferdowsi M (2017) Ultrasonic treatment of CoFe2O4@B2O3–SiO2 as a new hybrid magnetic composite nanostructure and catalytic application in the synthesis of dihydroquinazolinones. Ultrason Sonochem 37:260–266

    CAS  PubMed  Google Scholar 

  17. Maleki A, Firouzi-Haji R (2018) L-Proline functionalized magnetic nanoparticles: a novel magnetically reusable nanocatalyst for one-pot synthesis of 2,4,6-triarylpyridines. Sci Rep 8:1–8

    CAS  Google Scholar 

  18. Maleki A, Ghalavand R, Firouzi-Haji R (2018) A novel and eco-friendly o-phenylendiamine stabilized on silica-coated magnetic nanocatalyst for the synthesis of indenoquinoline derivatives under ultrasonic-assisted solvent-free conditions. Iran J Catal 8:221–229

    CAS  Google Scholar 

  19. Beach ES, Cui Z, Anastas PT (2009) Green chemistry: a design framework for sustainability. Energy Environ Sci 2:1038

    CAS  Google Scholar 

  20. Gu Y, Jerome F (2013) Bio-based solvents: an emerging generation of fluids for the design of eco-efficient processes in catalysis and organic chemistry. Chem Soc Rev 42:9550

    CAS  PubMed  Google Scholar 

  21. Garcia JI, Garcia-Mariin H, Pires E (2014) Glycerol based solvents: synthesis, properties and applications. Green Chem 16:1007–1033

    CAS  Google Scholar 

  22. Pollet P, Davey EA, Urena-Benavides EE et al (2014) Solvents for sustainable chemical processes. Green Chem 16:1034–1055

    CAS  Google Scholar 

  23. del Monte F, Carriazo D, Serrano MC et al (2014) Deep eutectic solvents in polymerizations: a greener alternative to conventional syntheses. Chemsuschem 7:999–1009

    PubMed  Google Scholar 

  24. Butler RN, Coyne AG (2010) Water: nature’s reaction enforcer-comparative effects for organic synthesis “in-water” and “on-water”. Chem Rev 110:6302–6337

    CAS  PubMed  Google Scholar 

  25. Chanda A, Fokin VV (2009) Organic synthesis “on water”. Chem Rev 109:725–748

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Petrova KV, Stec DF, Voehler M, Rizzo CJ (2011) Synthesis of the four stereoisomers of 2,3-epoxy-4-hydroxynonanal and their reactivity with deoxyguanosine. Org Biomol Chem 9:1960

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Saha A, Payra S, Banerjee S (2015) One-pot multicomponent synthesis of highly functionalized bio-active pyrano[2,3-c]pyrazole and benzylpyrazolyl coumarin derivatives using ZrO 2 nanoparticles as a reusable catalyst. Green Chem 17:2859–2866

    CAS  Google Scholar 

  28. Jin CH, Krishnaiah M, Sreenu D et al (2014) 4-([1,2,4]Triazolo[1,5-a]pyridin-6-yl)-5(3)-(6-methylpyridin-2-yl)imidazole and -pyrazole derivatives as potent and selective inhibitors of transforming growth factor-β type I receptor kinase. Bioorg Med Chem 22:2724–2732

    CAS  PubMed  Google Scholar 

  29. Mert S, Kasimogullari R, Ica T et al (2014) Synthesis, structure-activity relationships, and in vitro antibacterial and antifungal activity evaluations of novel pyrazole carboxylic and dicarboxylic acid derivatives. Eur J Med Chem 78:86–96

    CAS  PubMed  Google Scholar 

  30. Purohit MK, Chakka SK, Scovell I et al (2014) Structure–activity relationships of pyrazole derivatives as potential therapeutics for immune thrombocytopenias. Bioorg Med Chem 22:2739–2752

    CAS  PubMed  Google Scholar 

  31. Sangani CB, Makawana JA, Zhang X et al (2014) Design, synthesis and molecular modeling of pyrazole–quinoline–pyridine hybrids as a new class of antimicrobial and anticancer agents. Eur J Med Chem 76:549–557

    CAS  PubMed  Google Scholar 

  32. Shaveta Singh A, Kaur M et al (2014) Rational design, synthesis and evaluation of chromone-indole and chromone-pyrazole based conjugates: identification of a lead for anti-inflammatory drug. Eur J Med Chem 77:185–192

    CAS  PubMed  Google Scholar 

  33. Chung H-S, Kim Y, Oh SJ et al (2013) A synthetic compound, 4-acetyl-3-methyl-6-(3,4,5-trimethoxyphenyl)pyrano[3,4-c]pyran-1,8-dione, ameliorates ovalbumin-induced asthma. Bioorg Med Chem 21:6359–6365

    CAS  PubMed  Google Scholar 

  34. Toledo MA, Pedregal C, Lafuente C et al (2014) Discovery of a novel series of orally active nociceptin/orphanin fq (nop) receptor antagonists based on a dihydrospiro(piperidine-4,7′-thieno[2,3-c]pyran) scaffold. J Med Chem 57:3418–3429

    CAS  PubMed  Google Scholar 

  35. Macaev FZ, Sucman NS, Pogrebnoi SI et al (2014) Initial synthesis of diastereomeric pyran spirooxoindolinones based on (−)-carvone and (+)-3-carene. Chem Nat Compd 50:103–108

    CAS  Google Scholar 

  36. Chen P-J, Yang A, Gu Y-F et al (2014) Synthesis, in vitro antimicrobial and cytotoxic activities of novel pyrimidine–benzimidazol combinations. Bioorg Med Chem Lett 24:2741–2743

    CAS  PubMed  Google Scholar 

  37. El-Agrody AM, Fouda AM, Al-Dies A-AM (2014) Studies on the synthesis, in vitro antitumor activity of 4H-benzo[h]chromene, 7H-benzo[h]chromene[2,3-d]pyrimidine derivatives and structure–activity relationships of the 2-,3- and 2,3-positions. Med Chem Res 23:3187–3199

    CAS  Google Scholar 

  38. Luo Y, Deng Y-Q, Wang J et al (2014) Design, synthesis and bioevaluation of N-trisubstituted pyrimidine derivatives as potent aurora A kinase inhibitors. Eur J Med Chem 78:65–71

    CAS  PubMed  Google Scholar 

  39. Abdelrazek FM, Metz P, Metwally NH, El-Mahrouky SF (2006) Synthesis and molluscicidal activity of new cinnoline and pyrano [2,3-c]pyrazole derivatives. Arch Pharm (Weinheim) 339:456–460

    CAS  Google Scholar 

  40. Foloppe N, Fisher LM, Howes R et al (2006) Identification of chemically diverse Chk1 inhibitors by receptor-based virtual screening. Bioorg Med Chem 14:4792–4802

    CAS  PubMed  Google Scholar 

  41. Thumar NJ, Patel MP (2010) Synthesis and in vitro antimicrobial evaluation of 4H-pyrazolopyran, -benzopyran and naphthopyran derivatives of 1H-pyrazole. Arkivoc 2009:363

    Google Scholar 

  42. Yousefi A, Yousefi R, Panahi F et al (2015) Novel curcumin-based pyrano[2,3-d]pyrimidine anti-oxidant inhibitors for α-amylase and α-glucosidase: implications for their pleiotropic effects against diabetes complications. Int J Biol Macromol 78:46–55

    CAS  PubMed  Google Scholar 

  43. Esmaeili AA, Salehan F, Habibi A, Fakhari AR (2016) Efficient synthesis of novel pyrano[2,3-d]pyrido[1,2-a]pyrimidine derivatives via isocyanide-based three-component reactions. Tetrahedron Lett 57:100–102

    CAS  Google Scholar 

  44. Heravi MM, Mousavizadeh F, Ghobadi N, Tajbakhsh M (2014) A green and convenient protocol for the synthesis of novel pyrazolopyranopyrimidines via a one-pot, four-component reaction in water. Tetrahedron Lett 55:1226–1228

    CAS  Google Scholar 

  45. Ahanthem D, Singh SM, Laitonjam WS (2018) Synthesis, antimicrobial and antioxidant activities of novel 7-thioxo- 4,6,7,8-tetrahydro-pyrazolo[4′,3′:5,6]pyrano[2,3-d]pyrimidin-5(1H)-ones derived by SDS catalyzed multicomponent reactions in aqueous micellar media. Nat Prod J 8:228–238

    CAS  Google Scholar 

  46. Dastkhoon S, Tavakoli Z, Khodabakhshi S et al (2015) Nanocatalytic one-pot, four-component synthesis of some new triheterocyclic compounds consisting of pyrazole, pyran, and pyrimidinone rings. New J Chem 39:7268–7271

    CAS  Google Scholar 

  47. Khodabakhshi S, Rashidi A, Tavakoli Z et al (2016) The first catalytic application of oxidized carbon nanotubes in a four-component synthesis of fused heterocycles. Monatshefte für Chemie - Chem Mon 147:791–795

    CAS  Google Scholar 

  48. Li X-T, Zhao A-D, Mo L-P, Zhang Z-H (2014) Meglumine catalyzed expeditious four-component domino protocol for synthesis of pyrazolopyranopyrimidines in aqueous medium. RSC Adv 4:51580–51588

    CAS  Google Scholar 

  49. Nasresfahani Z, Kassaee MZ (2017) Cu-Immobilized mesoporous silica nanoparticles [Cu2+@MSNs-(CO2)2] as an efficient nanocatalyst for one-pot synthesis of pyrazolopyranopyrimidines in water. ChemistrySelect 2:9642–9646

    CAS  Google Scholar 

  50. Tipale MR, Khillare LD, Deshmukh AR, Bhosle MR (2018) An efficient four component domino synthesis of pyrazolopyranopyrimidines using recyclable choline chloride:urea deep eutectic solvent. J Heterocycl Chem 55:716–728

    CAS  Google Scholar 

  51. Ganesan A, Kothandapani J, Subramaniapillai SG (2016) Extending the scope of oleic acid catalysis in diversity-oriented synthesis of chromene and pyrimidine based scaffolds. RSC Adv 6:20582–20587

    CAS  Google Scholar 

  52. Rigi F, Shaterian HR (2016) Magnetic nanoparticle supported ionic liquid assisted green synthesis of pyrazolopyranopyrimidines and 1,6-diamino-2-oxo-1,2,3,4-tetrahydropyridine-3,5- dicarbonitriles. J Chin Chem Soc 63:557–561

    CAS  Google Scholar 

  53. Kardooni R, Kiasat AR (2019) A green, catalyst-free synthesis of pyrazolopyranopyrimidines in polyethylene glycol as a biodegradable medium at ambient temperature. Mol Divers 23:639–649

    CAS  PubMed  Google Scholar 

  54. Bakherad M, Doosti R, Keivanloo A et al (2017) A new, simple, catalyst-free method for the synthesis of pyrazolopyranopyrimidines in magnetized water. Lett Org Chem 14:510–516

    CAS  Google Scholar 

  55. Maleki A, Jafari AA, Yousefi S (2017) Green cellulose-based nanocomposite catalyst: design and facile performance in aqueous synthesis of pyranopyrimidines and pyrazolopyranopyrimidines. Carbohydr Polym 175:409–416

    CAS  PubMed  Google Scholar 

  56. Ziarani GM, Aleali F, Lashgari N et al (2018) Efficient synthesis and antimicrobial evaluation of pyrazolopyranopyrimidines in the presence of SBA-PR-SO3H as a nanoporous acid catalyst. Iran J Pharm Res 17:525–534

    CAS  Google Scholar 

  57. Kumar A, Dutt Shukla R (2015) β-Cyclodextrin catalysed C–C bond formation via C(sp 3)–H functionalization of 2-methyl azaarenes with diones in aqueous medium. Green Chem 17:848–851

    CAS  Google Scholar 

  58. Kumar A, Tripathi VD, Kumar P (2011) β-Cyclodextrin catalysed synthesis of tryptanthrin in water. Green Chem 13:51–54

    CAS  Google Scholar 

  59. Yadav VB, Rai P, Sagir H et al (2018) A green route for the synthesis of pyrrolo[2,3- d]pyrimidine derivatives catalyzed by β-cyclodextrin. New J Chem 42:628–633

    CAS  Google Scholar 

  60. Konkala K, Chowrasia R, Manjari PS et al (2016) β-Cyclodextrin as a recyclable catalyst: aqueous phase one-pot four-component synthesis of polyfunctionalized pyrroles. RSC Adv 6:43339–43344

    CAS  Google Scholar 

  61. Patil DR, Wagh YB, Ingole PG et al (2013) β-Cyclodextrin-mediated highly efficient [2 + 3] cycloaddition reactions for the synthesis of 5-substituted 1H-tetrazoles. New J Chem 37:3261–3266

    CAS  Google Scholar 

  62. Dalal DS, Patil DR, Tayade YA (2018) β-Cyclodextrin: a green and efficient supramolecular catalyst for organic transformations. Chem Rec 18:1560–1582

    CAS  PubMed  Google Scholar 

  63. Tayade YA, Jangale AD, Dalal DS (2018) Simple and highly efficient synthesis of thioamide derivatives using β-cyclodextrin as supramolecular ctalyst in water. ChemistrySelect 3:8895–8900

    CAS  Google Scholar 

  64. Tayade YA, Dalal DS (2017) β-Cyclodextrin as a supramolecular catalyst for the synthesis of 1H-pyrazolo[1,2-b]phthalazine-5,10-dione derivatives in water. Catal Lett 147:1411–1421

    Google Scholar 

  65. Ji HB, Shi DP, Shao M et al (2005) Transition metal-free and substrate-selective oxidation of alcohols using water as an only solvent in the presence of β-cyclodextrin. Tetrahedron Lett 46:2517–2520

    CAS  Google Scholar 

  66. Jadhav C, Khillare LD, Bhosle MR (2018) Efficient sonochemical protocol for the facile synthesis of dipyrimido-dihydropyridine and pyrimido[4,5-d]pyrimidines in aqueous β-cyclodextrin. Synth Commun 48:233–246

    CAS  Google Scholar 

  67. Ghorad A, Mahalle S, Khillare LD et al (2017) β-Cyclodextrin as a biomimetic catalyst for the efficient synthesis of 4-oxo-pyrido[1,2-a] pyrimidine-3-carbonitrile in aqueous medium. Catal Lett 147:640–648

    CAS  Google Scholar 

  68. Arjun Reddy M, Rajender Reddy L, Bhanumathi N, Rama Rao K (2001) Selective deprotection of tetrahydropyranyl ethers catalysed by β-cyclodextrin in water. New J Chem 25:359–360

    Google Scholar 

  69. Khaligh NG, Shirini F (2013) Ultrasound assisted the chemoselective 1,1-diacetate protection and deprotection of aldehydes catalyzed by poly(4-vinylpyridinium)hydrogen sulfate salt as a eco-benign, efficient and reusable solid acid catalyst. Ultrason Sonochem 20:19–25

    CAS  PubMed  Google Scholar 

  70. Arani NM, Safari J (2011) A rapid and efficient ultrasound-assisted synthesis of 5,5-diphenylhydantoins and 5,5-diphenyl-2-thiohydantoins. Ultrason Sonochem 18:640–643

    CAS  PubMed  Google Scholar 

  71. Cintas P, Luche J-L (1999) Green chemistry: The sonochemical approach. Green Chem 1:115–125

    CAS  Google Scholar 

  72. Baig RBN, Varma RS (2012) Alternative energy input: mechanochemical, microwave and ultrasound-assisted organic synthesis. Chem Soc Rev 41:1559–1584

    CAS  PubMed  Google Scholar 

  73. Puri S, Kaur B, Parmar A, Kumar H (2013) Applications of ultrasound in organic synthesis—a green approach. Curr Org Chem 17:1790–1828

    CAS  Google Scholar 

  74. Brahmachari G, Karmakar I, Nurjamal K (2018) Ultrasound-assisted expedient and green synthesis of a new series of diversely functionalized 7-aryl/heteroarylchromeno[4,3-d]pyrido[1,2- a]pyrimidin-6(7 H)-ones via one-pot multicomponent reaction under sulfamic acid catalysis at ambient conditions. ACS Sustain Chem Eng 6:11018–11028

    CAS  Google Scholar 

  75. Banerjee B (2017) Recent developments on ultrasound assisted catalyst-free organic synthesis. Ultrason Sonochem 35:1–14

    CAS  PubMed  Google Scholar 

  76. Banerjee B (2017) Recent developments on ultrasound-assisted one-pot multicomponent synthesis of biologically relevant heterocycles. Ultrason Sonochem 35:15–35

    CAS  PubMed  Google Scholar 

  77. Khan MN, Karamthulla S, Choudhury LH, Haque Faizi MS (2015) Ultrasound assisted multicomponent reactions: a green method for the synthesis of highly functionalized selenopyridines using reusable polyethylene glycol as reaction medium. RSC Adv 5:22168–22172

    CAS  Google Scholar 

  78. Akolkar SV, Nagargoje AA, Krishna VS et al (2019) New N -phenylacetamide-incorporated 1,2,3-triazoles: [Et3NH][OAc]-mediated efficient synthesis and biological evaluation. RSC Adv 9:22080–22091

    CAS  Google Scholar 

  79. Nagargoje AA, Akolkar SV, Siddiqui MM et al (2019) Synthesis and evaluation of pyrazole-incorporated monocarbonyl curcumin analogues as antiproliferative and antioxidant agents. J Chin Chem Soc. https://doi.org/10.1002/jccs.201800405

    Article  Google Scholar 

  80. Shaikh MH, Subhedar DD, Arkile M et al (2016) Synthesis and bioactivity of novel triazole incorporated benzothiazinone derivatives as antitubercular and antioxidant agent. Bioorg Med Chem Lett 26:561–569

    CAS  PubMed  Google Scholar 

  81. Danne AB, Choudhari AS, Chakraborty S et al (2018) Triazole-diindolylmethane conjugates as new antitubercular agents: synthesis, bioevaluation, and molecular docking. Medchemcomm 9:1114–1130

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Shaikh MH, Subhedar DD, Shingate BB et al (2016) Synthesis, biological evaluation and molecular docking of novel coumarin incorporated triazoles as antitubercular, antioxidant and antimicrobial agents. Med Chem Res 25:790–804

    CAS  Google Scholar 

  83. Khare SP, Deshmukh TR, Sangshetti JN et al (2018) Design, synthesis and molecular docking studies of novel triazole-chromene conjugates as antitubercular, antioxidant and antifungal agents. ChemistrySelect 3:13113–13122

    CAS  Google Scholar 

  84. Subhedar DD, Shaikh MH, Shingate BB et al (2017) Quinolidene-rhodanine conjugates: facile synthesis and biological evaluation. Eur J Med Chem 125:385–399

    CAS  PubMed  Google Scholar 

  85. Subhedar DD, Shaikh MH, Kalam Khan FA et al (2016) Facile synthesis of new N-sulfonamidyl-4-thiazolidinone derivatives and their biological evaluation. New J Chem 40:3047–3058

    CAS  Google Scholar 

  86. Subhedar DD, Shaikh MH, Shingate BB et al (2016) Novel tetrazoloquinoline-thiazolidinone conjugates as possible antitubercular agents: synthesis and molecular docking. Medchemcomm 7:1832–1848

    CAS  Google Scholar 

  87. Subhedar DD, Shaikh MH, Nawale L et al (2016) Novel tetrazoloquinoline–rhodanine conjugates: highly efficient synthesis and biological evaluation. Bioorg Med Chem Lett 26:2278–2283

    CAS  PubMed  Google Scholar 

  88. Subhedar DD, Shaikh MH, Arkile MA et al (2016) Facile synthesis of 1,3-thiazolidin-4-ones as antitubercular agents. Bioorg Med Chem Lett 26:1704–1708

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

One of the authors SVA is very much grateful to the Council of Scientific and Industrial Research (CSIR), New Delhi for the award of a research fellowship. Authors are also thankful to the Head, Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad for providing laboratory facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bapurao B. Shingate.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3590 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akolkar, S.V., Kharat, N.D., Nagargoje, A.A. et al. Ultrasound-Assisted β-Cyclodextrin Catalyzed One-Pot Cascade Synthesis of Pyrazolopyranopyrimidines in Water. Catal Lett 150, 450–460 (2020). https://doi.org/10.1007/s10562-019-02968-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02968-4

Keywords

Navigation