Skip to main content
Log in

Facile Synthesis and Phase-Dependent Catalytic Activity of Cabbage-Type Copper Oxide Nanostructures for Highly Efficient Reduction of 4-Nitrophenol

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Cabbage-type morphology of cupric oxide (CuO) and cuprous oxide (Cu2O) nanostructures were synthesized via a simple and cost-effective chemical approach. HRTEM, FESEM, XRD, UV–Vis absorption and photoluminescence spectroscopies were used to identify the structural, optical, morphological and catalytic properties of the prepared nanostructures. Phase of the prepared copper oxide nanostructures was well controlled by changing the concentration of glucose. The prepared cabbage-type Cu2O nanostructures showed exceptionally improved catalytic performance towards the reduction of toxic 4-nitrophenol into useful 4-aminophenol as compared to cabbage-type CuO nanostructures. Cabbage-type Cu2O nanostructures completely transformed 4-NP into 4-AP in just 5 min with excellent rate constant (0.587 min−1). The observed excellent catalytic activity of prepared cabbage-type Cu2O nanostructures indicates their potential use in catalytic applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. McCullagh C, Skillen N, Adams M, Robertson PK (2011) J Chem Technol Biotechnol 86:1002

    Article  CAS  Google Scholar 

  2. Chatterjee D, Dasgupta S (2005) J Photo Chem Photobio C Photo Chem Rev 6:186

    Article  CAS  Google Scholar 

  3. Kuriakose S, Satpati B, Mohapatra S (2015) Phys Chem Chem Phys 17:25172

    Article  CAS  PubMed  Google Scholar 

  4. Legrini O, Oliveros E, Braun AM (1993) Chem Rev 93:671

    Article  CAS  Google Scholar 

  5. Zhang W, Xiao X, An T, Song Z, Fu J, Sheng G, Cui M (2003) J Chem Technol Biotechnol 78:788

    Article  CAS  Google Scholar 

  6. Menumerov E, Hughes RA, Neretina S (2016) Nano Lett 16:7791

    Article  CAS  PubMed  Google Scholar 

  7. Chang YC, Chen DH (2009) J Hazard Mater 165:664

    Article  CAS  PubMed  Google Scholar 

  8. Di Paola A, Marci G, Palmisano L, Schiavello M, Uosaki K, Ikeda S, Ohtani B (2002) J Phys Chem B 106:637

    Article  CAS  Google Scholar 

  9. Dieckmann MS, Gray KA (1996) Water Res 30:1169

    Article  CAS  Google Scholar 

  10. Che W, Ni Y, Zhang Y, Ma Y (2015) J Phys Chem Solids 77:1

    Article  CAS  Google Scholar 

  11. Xu H, Zhu G, Zheng D, Xi C, Xu X, Shen X (2012) J Colloid Interface Sci 383:75

    Article  CAS  PubMed  Google Scholar 

  12. Kuriakose S, Bhardwaj N, Singh J, Satpati B, Mohapatra S (2013) Beilstein J Nanotechnol 4:763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kuriakose S, Sahu K, Khan SA, Tripathi A, Avasthi DK, Mohapatra S (2017) Opt Mater 64:47

    Article  CAS  Google Scholar 

  14. Singh J, Khan SA, Shah J, Kotnala RK, Mohapatra S (2017) Appl Surf Sci 422:953

    Article  CAS  Google Scholar 

  15. Liu Y, Jiao Y, Zhang Z, Qu F, Umar A, Wu X (2014) ACS Appl Mater Interfaces 6:2174

    Article  CAS  PubMed  Google Scholar 

  16. Singh J, Sahu K, Pandey A, Kumar M, Ghosh T, Satpati B, Som T, Varma S, Avasthi DK, Mohapatra S (2017) Appl Surf Sci 411:347

    Article  CAS  Google Scholar 

  17. Kuriakose S, Satpati B, Mohapatra S (2015) Adv Mater Lett 6:217

    Article  CAS  Google Scholar 

  18. Konstantinou IK, Albanis TA (2004) Appl Catal B Environ 49:1

    Article  CAS  Google Scholar 

  19. Singh J, Satpati B, Mohapatra S (2017) Plasmonics 12:877

    Article  CAS  Google Scholar 

  20. Kuriakose S, Avasthi DK, Mohapatra S (2015) Beilstein J Nanotechnol 6:928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sahu K, Singh J, Satpati B, Mohapatra S (2018) J Phys Chem Solids 121:186

    Article  CAS  Google Scholar 

  22. Singh J, Mohapatra S (2015) Adv Mater Lett 6:924

    Article  CAS  Google Scholar 

  23. Kuriakose S, Satpati B, Mohapatra S (2015) Adv Mater Lett 6:1104

    Article  CAS  Google Scholar 

  24. Paola AD, Marci G, Palmisano L, Schiavello M, Uosaki K, Ikeda S, Ohtani B (2002) J Phys Chem B 106:637

    Article  CAS  Google Scholar 

  25. Mohamed MM, Al-Sharif MS (2013) Appl Catal B Environ 142:432

    Article  CAS  Google Scholar 

  26. Zhou Z, Lu C, Wu X, Zhang X (2013) RSC Adv 3:26066

    Article  CAS  Google Scholar 

  27. Saha S, Pal A, Kundu S, Basu S, Pal T (2009) Langmuir 26:2885

    Article  CAS  Google Scholar 

  28. Xu H, Wang W, Zhu W (2006) J Phys Chem B 110:13829

    Article  CAS  PubMed  Google Scholar 

  29. Wang WZ, Wang GH, Wang XS, Zhan YJ, Liu YK, Zheng CL (2002) Adv Mater 14:67

    Article  CAS  Google Scholar 

  30. Yu L, Zhang G, Wu Y, Bai X, Guo D (2008) J Cryst Growth 310:3125

    Article  CAS  Google Scholar 

  31. Shrestha KM, Sorensen CM, Klabunde KJ (2010) J Phys Chem C 114:14368

    Article  CAS  Google Scholar 

  32. Wang Y, Huang D, Zhu X, Ma Y, Geng H, Wang Y, Yin G, He D, Yang Z, Hu N (2014) Nanoscale Res Lett 9:624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Misra SK, Nuseibeh S, Dybowska A, Berhanu D, Tetley TD, Jones EV (2014) Nanotoxicology 8:422

    Article  CAS  PubMed  Google Scholar 

  34. Kannaki K, Ramesh PS, Geetha D (2013) J Sci Eng Res 3:1

    Google Scholar 

  35. Prathap MA, Kaur B, Srivastava R (2012) J Colloid Interface Sci 370:144

    Article  CAS  PubMed  Google Scholar 

  36. Chen L, Shet S, Tang H, Wang H, Deutsch T, Yan Y, Turner J, Jassim MA (2010) J Mater Chem 20:6962

    Article  CAS  Google Scholar 

  37. Gaashani RA, Radiman S, Tabet N, Daud AR (2011) J Alloys Compd 509:8761

    Article  CAS  Google Scholar 

  38. Samarasekara P, Kumara NT, Yapa NU (2006) J Phys Cond Matter 18:2417

    Article  CAS  Google Scholar 

  39. Yang Z, Xu J, Zhang W, Liu A, Tang S (2007) J Solid State Chem 180:1390

    Article  CAS  Google Scholar 

  40. Xu L, Xu HY, Wang F, Zhang FJ, Meng ZD, Zhao W, Oh WC (2012) J Korean Ceram Soc 49:151

    Article  CAS  Google Scholar 

  41. Ethiraj AS, Kang DJ (2012) Nanoscale Res Lett 7:70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bhattacharjee A, Ahmaruzzaman M (2016) RSC Adv 6:41348

    Article  CAS  Google Scholar 

  43. Chand P, Gaur A, Kumar A (2013) Superlatt Microstruct 60:129

    Article  CAS  Google Scholar 

  44. Sone BT, Diallo A, Fuku XG, Gurib-Fakim A, Maaza M (2017) Arab J Chem. https://doi.org/10.1016/j.arabjc.2017.03.004

    Article  Google Scholar 

  45. Mageshwari K, Sathyamoorthy R (2013) Appl Nanosci 3:161

    Article  CAS  Google Scholar 

  46. Das K, De SK (2009) J Lumin 129:1015

    Article  CAS  Google Scholar 

  47. Dahl JP, Switendick ACJ (1966) Phys Chem Solids 27:931

    Article  CAS  Google Scholar 

  48. Singh DP, Ojha AK, Srivastava ON (2009) J Phys Chem C 113:3409

    Article  CAS  Google Scholar 

  49. Zuo Y, Song JM, Niu HL, Mao CJ, Zhang SY, Shen YH (2016) Nanotechnol 27:145701

    Article  CAS  Google Scholar 

  50. Frenkel AI, Rodriguez JA, Chen JG (2012) ACS Catal 2:2269

    Article  CAS  Google Scholar 

  51. Aditya T, Jana J, Singh NK, Pal A, Pal T (2017) ACS Omega 2:1968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xu H, Wang W, Zhu W (2006) J Phys Chem B 110:13829

    Article  CAS  PubMed  Google Scholar 

  53. Konar S, Kalita H, Puvvada N, Tantubay S, Mahto MK, Biswas S, Pathak A (2016) J Catal 336:11

    Article  CAS  Google Scholar 

  54. Nwanya AC, Obi D, Ozoemena KI, Osuji RU, Awada C, Ruediger A, Maaza M, Rosei F, Ezema FI (2016) Electrochim Acta 198:220

    Article  CAS  Google Scholar 

  55. Karthik S, Siva P, Balu KS, Suriyaprabha R, Rajendran V, Maaza M (2017) Adv Powder Technol 12:3184

    Article  CAS  Google Scholar 

  56. Saravanakkumar D, Sivaranjani S, Kaviyarasu K, Ayeshamariam A, Ravikumar B, Pandiarajan S, Veeralakshmi C, Jayachandran M, Maaza M (2018) J Semicond 39:033001

    Article  CAS  Google Scholar 

Download references

Acknowledgement

KS is thankful to the DST (Department of science and technology), New Delhi for the financial grant in the form of WOS-A Project (SR/WOS-A/PM-10/2017(G&C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyabrata Mohapatra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, K., Satpati, B. & Mohapatra, S. Facile Synthesis and Phase-Dependent Catalytic Activity of Cabbage-Type Copper Oxide Nanostructures for Highly Efficient Reduction of 4-Nitrophenol. Catal Lett 149, 2519–2527 (2019). https://doi.org/10.1007/s10562-019-02817-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02817-4

Keywords

Navigation