Skip to main content
Log in

Fe-Doped Alumina Aerogels as a Green Heterogeneous Catalyst for Efficient Degradation of Organic Pollutants

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Nowadays, increasing attention has been focused on tailor-made aerogels through the addition of different components, which have been employed in specific catalytic reactions. In this study, Fe-doped alumina aerogel as a novel heterogeneous catalyst for degradation of Rhodamine B (RhB) was constructed by sol–gel one-step method, which is not only simple, but also can avoid the leaching of active components during degradation of RhB. Besides, the catalyst maintains high activity for the degradation of RhB within a wide range of pH values (2–10). Heat treatment could lead to enhancement of Fe–O–Al bond and significantly inhibit iron leaching. Effects of some parameters, including reaction temperature, dosages of H2O2, pH values and RhB concentrations on RhB degradation were also investigated. FTIR and ICP analysis shows that the catalyst exhibits low iron leaching, good structural stability and high catalytic efficiency after reuse. The catalytic mechanism and RhB degradation pathway were proposed based on the results of electron paramagnetic resonance (EPR) and the liquid chromatography-mass spectrometry (LCMS). We believe that Fe-doped alumina aerogel can be an efficient and green heterogeneous catalyst for the degradation of organic pollutants.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Martínez-Huitle CA, Brillas E (2015) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: an updated review. Appl Catal B 166–167:603–643

    Google Scholar 

  2. Li XQ, Zhang QH, Ma K, Li HM, Guo Z (2015) Identification and determination of 34 water-soluble synthetic dyes in foodstuff by high performance liquid chromatography-diode array detection-ion trap time-of-flight tandem mass spectrometry. Food Chem 182:316–326

    Article  CAS  PubMed  Google Scholar 

  3. Natarajan TS, Thomas M, Natarajan K, Bajaj HC, Tayade RJ (2011) Study on UV-LED/TiO2 process for degradation of Rhodamine B dye. Chem Eng J 169:126–134

    Article  CAS  Google Scholar 

  4. Amin MT, Alazba AA, Manzoor U (2014) A review of removal of pollutants from water/wastewater using different types of nanomaterials. Adv Mater Sci Eng 2014:1–24

    Article  CAS  Google Scholar 

  5. Yin W, Wang W, Zhou L, Sun S, Zhang L (2010) CTAB-assisted synthesis of monoclinic BiVO4 photocatalyst and its highly efficient degradation of organic dye under visible-light irradiation. J Hazard Mater 173:194–199

    Article  CAS  PubMed  Google Scholar 

  6. Merouani S, Hamdaoui O, Saoudi F, Chiha M, Pétrier C (2010) Influence of bicarbonate and carbonate ions on sonochemical degradation of Rhodamine B in aqueous phase. J Hazard Mater 175:593–599

    Article  CAS  PubMed  Google Scholar 

  7. Antonopoulou M, Evgenidou E, Lambropoulou D, Konstantinou I (2014) A review on advanced oxidation processes for the removal of taste and odor compounds from aqueous media. Water Res 5:215–234

    Article  CAS  Google Scholar 

  8. Asghar A, Abdul Raman AA, Daud WMAW (2015) Advanced oxidation processes for in situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: a review. J Clean Prod 87:826–838

    Article  CAS  Google Scholar 

  9. Chong MN, Sharma AK, Burn S, Saint CP (2012) Feasibility study on the application of advanced oxidation technologies for decentralised wastewater treatment. J Clean Prod 35:230–238

    Article  CAS  Google Scholar 

  10. Lim H, Lee J, Jin S, Kim J, Yoon J, Hyeon T (2006) Highly active heterogeneous Fenton catalyst using iron oxide nanoparticles immobilized in alumina coated mesoporous silica. Chem Commun 4:463–465

    Article  Google Scholar 

  11. Yang XJ, Xu XM, Xu J, Han YF (2013) Iron oxychloride (FeOCl): an efficient Fenton-like catalyst for producing hydroxyl radicals in degradation of organic contaminants. J Am Chem Soc 135:16058–16061

    Article  CAS  PubMed  Google Scholar 

  12. Xue X, Hanna K, Deng N (2009) Fenton-like oxidation of Rhodamine B in the presence of two types of iron (II, III) oxide. J Hazard Mater 166:407–414

    Article  CAS  PubMed  Google Scholar 

  13. Fan Y, Ai Z, Zhang L (2010) Design of an electro-Fenton system with a novel sandwich film cathode for wastewater treatment. J Hazard Mater 176:678–684

    Article  CAS  PubMed  Google Scholar 

  14. He J, Tao X, Ma W, Zhao J (2002) Heterogeneous photo-fenton degradation of an azo dye in aqueous H2O2/iron oxide dispersions at neutral phs. Chem Lett 31:86

    Article  Google Scholar 

  15. Anipsitakis GP, Dionysiou DD (2003) Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt. Environ Sci Technol 37:4790–4797

    Article  CAS  PubMed  Google Scholar 

  16. Anipsitakis GP, Dionysiou DD (2003) Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt. Environ Sci Technol 37:4790–4797

    Article  CAS  PubMed  Google Scholar 

  17. Yang Q, Choi H, Al-Abed SR, Dionysiou DD (2009) Iron-cobalt mixed oxide nanocatalysts: heterogeneous peroxymonosulfate activation, cobalt leaching, and ferromagnetic properties for environmental applications. Appl Catal B 88:462–468

    Article  CAS  Google Scholar 

  18. Wang Y, Zhao H, Li M, Fan J, Zhao G (2014) Magnetic ordered mesoporous copper ferrite as a heterogeneous Fenton catalyst for the degradation of imidacloprid. Appl Catal B 147:534–545

    Article  CAS  Google Scholar 

  19. Ren Y, Dong Q, Feng J, Ma J, Wen Q, Zhang M (2012) Magnetic porous ferrospinel NiFe2O4: a novel ozonation catalyst with strong catalytic property for degradation of di-n-butyl phthalate and convenient separation from water. J Colloid Interface Sci 382:90–96

    Article  CAS  PubMed  Google Scholar 

  20. Fu YS, Chen HQ, Sun XQ, Wang X (2012) Combination of cobalt ferrite and graphene: high-performance and recyclable visible-light photocatalysis. Appl Catal B 111:280–287

    Article  CAS  Google Scholar 

  21. Yao YJ, Yang ZH, Zhang DW, Peng WC, Sun HQ, Wang SB (2012) Magnetic CoFe2O4-graphene hybrids: facile synthesis, characterization, and catalytic properties. Ind Eng Chem Res 51:6044–6051

    Article  CAS  Google Scholar 

  22. Kadu BS, Limaye RA, Natu AD, Chikate RC (2013) Potentiality of Fe–Ni nanocomposites towards environmental abetment of magenta dye. Environ Prog Sustain Energy 32:615–623

    Article  CAS  Google Scholar 

  23. Navalon S, De Miguel M, Martin R, Alvaro M, Garcia H (2011) Enhancement of the catalytic activity of supported gold nanoparticles for the fenton reaction by light. J Am Chem Soc 133:2218–2226

    Article  CAS  PubMed  Google Scholar 

  24. Hu P, Long M, Bai X et al (2017) Monolithic cobalt-doped carbon aerogel for efficient catalytic activation of peroxymonosulfate in water. J Hazard Mater 332:195–204

    Article  CAS  PubMed  Google Scholar 

  25. Hüsing N, Schubert U (1998) Aerogels—airy materials: chemistry, structure, and properties. Angew Chem Int 37:22–45

    Article  Google Scholar 

  26. Maleki H (2016) Recent advances in aerogels for environmental remediation applications: a review. Chem Eng J 300:98–118

    Article  CAS  Google Scholar 

  27. Amonette JE, Matyáš J (2017) Functionalized silica aerogels for gas-phase purification, sensing, and catalysis: a review. Microporous Mesoporous, Mat

    Book  Google Scholar 

  28. Dunn BC, Cole P, Covington D, Webster MC, Pugmire RJ, Ernst RD, Eyring EM, Shah N, Huffman GP (2005) Silica aerogel supported catalysts for Fischer-Tropsch synthesis. Appl Catal A 278:233–238

    Article  CAS  Google Scholar 

  29. Bali S, Huggins FE, Huffman GP, Ernst RD, Pugmire RJ, Eyring EM (2009) Iron aerogel and xerogel catalysts for Fischer-Tropsch synthesis of diesel fuel. Energy Fuels 23:14–18

    Article  CAS  Google Scholar 

  30. Rotter H, Landau MV, Carrera M, Goldfarb D, Herskowitz M (2004) High surface area chromia aerogel efficient catalyst and catalyst support for ethylacetate combustion. Appl Catal B 47:111–126

    Article  CAS  Google Scholar 

  31. Maleki H, Hüsing N (2018) Current status, opportunities and challenges in catalytic and photocatalytic applications of aerogels: environmental protection aspects. Appl Catal B 221:530–555

    Article  CAS  Google Scholar 

  32. Schwarz JA, Contescu C, Contescu A (1995) Methods for preparation of catalytic materials. Chem Rev 95:477–510

    Article  CAS  Google Scholar 

  33. Feinle A, Elsaesser MS, Hüsing N (2016) Sol–gel synthesis of monolithic materials with hierarchical porosity Chem. Soc Rev 45:3377–3399

    Article  CAS  Google Scholar 

  34. Gao B, Ma Y, Mei J et al (2018) Functional nanocomposite wet gels and aerogels induced by transition/lanthanide metal ions coordination. Chem Eng J 331:597–605

    Article  CAS  Google Scholar 

  35. Ren L, Cui S, Cao F et al (2014) An easy way to prepare monolithic inorganic oxide aerogels. Angew Chem Int 53:10147–10149

    Article  CAS  Google Scholar 

  36. Gong C, Chen F, Yang Q et al (2017) Heterogeneous activation of peroxymonosulfate by Fe-Co layered doubled hydroxide for efficient catalytic degradation of Rhoadmine B. Chem Eng J 321:222–232

    Article  CAS  Google Scholar 

  37. Adam F, Andas J, Rahman IA (2010) A study on the oxidation of phenol by heterogeneous iron silica catalyst. Chem Eng J 165:658–667

    Article  CAS  Google Scholar 

  38. Li Y, Feng Z, Lian Y, Sun K, Zhang L, Jia G, Yang Q, Li C (2005) Direct synthesis of highly ordered Fe-SBA-15 mesoporous materials under weak acidic conditions. Microporous Mesoporous Mater 84:41–49

    Article  CAS  Google Scholar 

  39. Xin H, Liu J, Fan F, Feng Z, Jia G, Yang Q, Li C (2008) Mesoporous ferrosilicates with high content of isolated iron species synthesized in mild buffer solution and their catalytic application. Microporous Mesoporous Mater 113:231–239

    Article  CAS  Google Scholar 

  40. Li J, Wang J, Zhang G et al (2018) Enhanced molecular oxygen activation of Ni2+-doped BiO2-x nanosheets under UV, visible and near-infrared irradiation: mechanism and DFT study. Appl Catal B 234:167–177

    Article  CAS  Google Scholar 

  41. Yamashita T, Hayes P (2008) Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl Surf Sci 254:2441–2449

    Article  CAS  Google Scholar 

  42. Biesinger MC, Payne BP, Grosvenor AP et al (2011) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl Surf Sci 257:2717–2730

    Article  CAS  Google Scholar 

  43. Maldonado CS, De la Rosa J, Lucioortiz CJ et al (2014) Low concentration Fe-doped alumina catalysts using sol-gel and impregnation methods: the synthesis, characterization and catalytic performance during the combustion of trichloroethylene. Materials 7:2062–2086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cao F, Ren L, Li X (2015) Synthesis of high strength monolithic alumina aerogels at ambient pressure. RSC Adv 5:18025–18028

    Article  CAS  Google Scholar 

  45. Gan PP, Li SFY (2013) Efficient removal of Rhodamine B using a rice hull-based silica supported iron catalyst by Fenton-like process. Chem Eng J 229:351–363

    Article  CAS  Google Scholar 

  46. Wang K, Li Y, Zhang G et al (2019) 0D Bi nanodots/2D Bi3NbO7 nanosheets heterojunctions for efficient visible light photocatalytic degradation of antibiotics: enhanced molecular oxygen activation and mechanism insight. Appl Catal B 240:39–49

    Article  CAS  Google Scholar 

  47. Ramirez JH, Costa CA, Madeira LM, Mata G, Vicente MA, Rojas-Cervantes ML, López-Peinado AJ, Martín-Aranda RM (2007) Fenton-like oxidation of Orange II solutions using heterogeneous catalysts based on saponite clay. Appl Catal B 71:44–56

    Article  CAS  Google Scholar 

  48. Yu K, Yang S, Boyd SA, Chen H, Sun C (2011) Efficient degradation of organic dyes by BiAgxOy. J Hazard Mater 197:88–96

    Article  CAS  PubMed  Google Scholar 

  49. Neyens E, Baeyens J (2003) A review of classic Fenton’s peroxidation as an advanced oxidation technique. J Hazard Mater 98:33–50

    Article  CAS  PubMed  Google Scholar 

  50. Liu SQ, Cheng S, Feng LR, Wang XM, Chen Z-G (2010) Effect of alkali cations on heterogeneous photo-Fenton process mediated by Prussian blue colloids. J Hazard Mater 182:665–671

    Article  CAS  PubMed  Google Scholar 

  51. Guo T, Wang K, Zhang G et al (2019) A novel α-Fe2O3@ g-C3N4 catalyst: synthesis derived from Fe-based MOF and its superior photo-Fenton performance. Appl Surf Sci 469:331–339

    Article  CAS  Google Scholar 

  52. Biaglow JE, Kachur AV (1997) The generation of hydroxyl radicals in the reaction of molecular oxygen with polyphosphate complexes of ferrous ion. Radiat Res 148:181–187

    Article  CAS  PubMed  Google Scholar 

  53. Dias FF, Oliveira AAS, Arcanjo AP et al (2016) Residue-based iron catalyst for the degradation of textile dye via heterogeneous photo-Fenton. Appl Catal B 186:136–142

    Article  CAS  Google Scholar 

  54. Nguyen XS, Zhang G, Yang X (2017) Mesocrystalline Zn-doped Fe3O4 hollow submicrospheres: formation mechanism and enhanced photo-Fenton catalytic performance. ACS Appl. Mater. Interface 9:8900–8909

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support of the Nature Science Foundation of Jiangsu Province of China (BK20151408) and the Fundamental Research Funds for the Central Universities (2242016K41018 and KYLX16_0193) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (1107047002) and Graduate Practice Innovation Program of Jiangsu Province of China (SJCX17_0031).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors.

Corresponding author

Correspondence to Lili Ren.

Ethics declarations

Conflict of interests

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2555 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mei, J., Yuan, G., Ma, Y. et al. Fe-Doped Alumina Aerogels as a Green Heterogeneous Catalyst for Efficient Degradation of Organic Pollutants. Catal Lett 149, 1874–1887 (2019). https://doi.org/10.1007/s10562-019-02797-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02797-5

Keywords

Navigation