Skip to main content
Log in

Highly Stable and Recyclable Graphene Layers Protected Nickel–Cobalt Bimetallic Nanoparticles as Tunable Hydrotreating Catalysts for Phenylpropane Linkages in Lignin

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Nickel–cobalt bimetallic nanoparticles coated with several layers of graphene were developed through direct heating treatment of bimetallic oxide precursor prepared by the modified Pechini-type sol–gel method. These nanomaterials were demonstrated to be versatile catalysts for lignin depolymerization. The catalysts showed unexpectedly tunable selectivity that directly depends on the composition of bimetallic nanoparticles. Dimeric lignin model compounds can be converted totally and the hydrogenolysis selectivities above 85% over Ni–Co@C (Ni:Co = 1:3). During the recycling test, the nanocatalyst showed excellent recyclability in the ten-batch investigation. The deposition of graphene layers over bimetal nanoparticles fosters a subtle balance between protecting effects and surface accessibility to catalytic reactions and significantly improves their stability to air and moisture. Ni–Co@C catalysts were readily separated from the liquid mixtures with high recycling ratio due to their magnetic properties.

Graphical Abstract

Ni–Co bimetallic nanoparticles are coated with graphene layers. Graphene layers over the nanoparticles protect them from deactivation. Ni–Co@C shows tunable selectivity in the hydrogenolysis of dimeric lignin linkage. The non-precious metal catalyst showed excellent recyclability and can be reused ten times without significant loss of activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Li CZ, Zhao XC, Wang AQ, Huber GW, Zhang T (2015) Chem Rev 115:11559–11624

    Article  CAS  Google Scholar 

  2. Zaheer M, Kempe R (2015) ACS Catal 5:1675–1684

    Article  CAS  Google Scholar 

  3. Sturgeon MR, Kim S, Lawrence K, Paton RS, Chmely SC, Nimlos M, Foust TD, Beckham GT (2014) ACS Sustain Chem Eng 2:472–485

    Article  CAS  Google Scholar 

  4. Holladay JE, White JF, Bozell JJ, Johnson D (2007) Top Value-added chemicals from biomass. Vol. II-results of screening for potential candidates from biorefinery lignin. Pacific Northwest National Laboratory, Richland, WA, p PNNL-16983

    Book  Google Scholar 

  5. Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W (2010) Plant Physiol 153:895–905

    Article  CAS  Google Scholar 

  6. Bjorsvk HR, Liguori L (2002) Org Process Res Dev 6:279–290

    Article  Google Scholar 

  7. Bozell JJ (2014) Top Curr Chem 353:229–255

    Article  CAS  Google Scholar 

  8. Pandey A, Bhaskar T, Stocker M, Sukumaran R (2015) Recent advances in thermochemical conversion of biomass. Elsevier, Waltham

    Google Scholar 

  9. Strassberger Z, Alberts AH, Louwerse MJ, Tanase S, Rothenberg G (2013) Green Chem 15:768–774

    Article  CAS  Google Scholar 

  10. Chen MY, Huang YB, Pang H, Liu XX, Fu Y (2015) Green Chem 17:1710–1717

    Article  CAS  Google Scholar 

  11. Zhou XY, Mitra J, Rauchfuss TB (2014) ChemSusChem 7:1623–1626

    Article  CAS  Google Scholar 

  12. Galkin MV, Sawadjoon S, Rohde V, Dawange M, Samec JSM (2014) ChemCatChem 6:179–184

    Article  CAS  Google Scholar 

  13. Kim JK, Lee JK, Kang KH, Lee JW, Song IK (2015) J Mol Catal A 410:184–192

    Article  CAS  Google Scholar 

  14. Zhang JG, Asakura H, van Rijn J, Yang J, Duchesne P, Zhang B, Chen X, Zhang P, Saeys M, Yan N (2014) Green Chem 16:2432–2437

    Article  CAS  Google Scholar 

  15. Zhang JG, Teo J, Chen X, Asakura H, Tanaka T, Teramura K, Yan N (2014) ACS Catal 4:1574–1583

    Article  CAS  Google Scholar 

  16. He JY, Zhao C, Lercher JA (2012) J Am Chem Soc 134:20768–20775

    Article  CAS  Google Scholar 

  17. Molinari V, Giordano C, Antonietti M, Esposito D (2014) J Am Chem Soc 136:1758–1761

    Article  CAS  Google Scholar 

  18. Sturgeon MR, O’Brien MH, Ciesielski PN, Katahira R, Kruger JS, Chmely SC, Hamlin J, Lawrence K, Hunsinger GB, Foust TD, Baldwin RM, Biddy MJ, Beckham GT (2014) Green Chem 16:824–835

    Article  CAS  Google Scholar 

  19. Cui XJ, Yuan HK, Junge K, Topf C, Beller M, Shi F (2017) Green Chem 19:305–310

    Article  CAS  Google Scholar 

  20. Cole-Hamilton DJ (2003) Science 299:1702–1706

    Article  CAS  Google Scholar 

  21. Corma A, Garcia H, Xamena FXL (2010) Chem Rev 110:4606–4655

    Article  CAS  Google Scholar 

  22. Ogasawara S, Kato S (2010) J Am Chem Soc 132:4608–4613

    Article  CAS  Google Scholar 

  23. Schoemaker HE, Mink D, Wubbolts MG (2003) Science 299:1694–1697

    Article  CAS  Google Scholar 

  24. Friedfield MR (2013) Science 342:1076–1080

    Article  Google Scholar 

  25. Galyis HMT (2012) Science 335:835–838

    Article  Google Scholar 

  26. Westerhaus FA, Jagadeesh RV, Wienhofer G, Pohl MM, Radnik J, Surkus AE, Rabeah J, Junge K, Junge H, Nielsen M, Bruckner A, Beller M (2013) Nat Chem 5:537–543

    Article  CAS  Google Scholar 

  27. Calderone VR, Shiju NR, Curulla-Ferr D, Chambrey S, Khodakov A, Rose A, Thiessen J, Jess A, Rothenberg G (2013) Angew Chem Int Ed 52:4397–4401

    Article  CAS  Google Scholar 

  28. Smith RDL, Prévot MS, Fagan RD, Trudel S, Berlinguette CP (2013) J Am Chem Soc 135:11580–11586

    Article  CAS  Google Scholar 

  29. Chen B, Li F, Huang Z, Yuan G (2017) Appl Catal B 200:192–199

    Article  CAS  Google Scholar 

  30. Mirza-Aghayan M, Tavana MM, Boukherroub R (2015) Catal Commun 69:97–103

    Article  CAS  Google Scholar 

  31. Galkin MV, Dahlstrand C, Samec JSM (2015) ChemSusChem 8:2187–2192

    Article  CAS  Google Scholar 

  32. Tan CG, Grass RN (2008) Chem Commun 36:4297–4299

    Article  Google Scholar 

  33. Si PZ, Zhang ZD, Geng DY, You CY, Zhao XG, Zhang WS (2003) Carbon 41:247–251

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Sciences Foundation of China (Nos. 21403248, 21174148, 21101161).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fengbo Li or Guoqing Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, B., Li, F. & Yuan, G. Highly Stable and Recyclable Graphene Layers Protected Nickel–Cobalt Bimetallic Nanoparticles as Tunable Hydrotreating Catalysts for Phenylpropane Linkages in Lignin. Catal Lett 147, 2877–2885 (2017). https://doi.org/10.1007/s10562-017-2179-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-017-2179-1

Keywords

Navigation