Skip to main content
Log in

The Initial Stages of NH3 and NO Adsorption On (Mo2O5)2+/HZSM-5 with Two Adjacent Unsaturated fiveFold Mo Sites in SCR Reaction: A Cluster DFT Study

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The density functional theory (DFT) has been employed to investigate the initial stages of NH3 and NO adsorption on both Lewis and Brønsted acid sites of (Mo2O5)2+/HZSM-5 by using cluster models. The calculated results reveal that NH3 can strongly adsorb on both Lewis and Brønsted acid sites in the form of coordinated NH3 and NH4 + and the corresponding adsorption energies are − 48.16 and − 37.28 kcal/mol, respectively. Compared with NH3, NO represents much poorer adsorption ability on both Lewis and Brønsted acid sites. Upon NH3 adsorption on Lewis acid site, its connected Mo site converts to sixfold coordination and octahedral structure while the other Mo site still remains fivefold coordination and tetrahedral structure and electronic structure. However, NH3 adsorption on Brønsted acid site leads to the decrease of stability and the increase of reactivity of the two fivefold coordinated Mo sites. Along the proposed reaction mechanisms, the results of NO adsorption on (Mo2O5)2+/HZSM-5 with adsorbed NH3 indicate that NO can be adsorbed on the second unsaturated fivefold Mo site for both Lewis and Brønsted acid sites and be activated, which weaken the interaction between adsorbed NH3 species and (Mo2O5)2+/HZSM-5.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Busca G, Lietti L, Ramis G, Berti F (1998) Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: a review. Appl Catal B 18:1–36

    Article  CAS  Google Scholar 

  2. Centi G, Perathoner S (2007) Chap. 1 Introduction: state of the art in the development of catalytic processes for the selective catalytic reduction of NOx into N2, In: Granger P, Pârvulescu VI (eds) Stud. Surf. Sci. Catal, Elsevier, pp. 1–23

  3. L. Lietti, I. Nova, G. Ramis, L. Dall’Acqua, G. Busca, E. Giamello, P. Forzatti, F. Bregani, Characterization and reactivity of V2O5–MoO3/TiO2 De-NOx SCR catalysts. J Catal. 187 (1999) 419–435.

    Article  CAS  Google Scholar 

  4. Casagrande L, Lietti L, Nova I, Forzatti P, Baiker A (1999) SCR of NO by NH3 over TiO2-supported V2O5–MoO3 catalysts: reactivity and redox behavior. Appl Catal B 22:63–77

    Article  CAS  Google Scholar 

  5. Mhamdi M, Ghorbel A, Delahay G (2009) Influence of the V + Mo/Al ratio on vanadium and molybdenum speciation and catalytic properties of V–Mo–ZSM-5 prepared by solid-state reaction. Catal Today 142:239–244

    Article  CAS  Google Scholar 

  6. Wang XP, Yu SS, Yang HL, Zhang SX (2007) Selective catalytic reduction of NO by C2H2 over MoO3/HZSM-5. Appl Catal B 71:246–253

    Article  CAS  Google Scholar 

  7. A.L.S.M. Salgado, Passos FB, Schmal M (2003) NO reduction by ethanol on Pd and Mo catalysts supported on HZSM-5. Catal Today 85:23–29

    Article  CAS  Google Scholar 

  8. Z. Li, W. Huang, K.-C. Xie (2005) Effect of Mo contents on properties of Mo/ZSM-5 zeolite catalyst for NOx reduction J Environ Sci. 17 103–105.

    CAS  Google Scholar 

  9. Z. Li, K.C. Xie, W. Huang, W. Reschetilowski(2005) Molybdenum loaded on HZSM-5: a catalyst for selective catalytic reduction of nitrogen oxides, Stud Surf Sci Catal. 158 1741–1748.

    Article  Google Scholar 

  10. Z. Li, W. Huang, K.C. Xie (2002) Selective catalytic reduction of NO over Mo/ZSM-5 catalyst. Chin J Catal 23 535–538.

    CAS  Google Scholar 

  11. Yu W, Zhu J, Qi L, Sun C, Gao F, Dong L, Chen Y (2011) Surface structure and catalytic properties of MoO3/CeO2 and CuO/MoO3/CeO2. J Colloid Interface Sci 364:435–442

    Article  CAS  Google Scholar 

  12. Peng Y, Qu R, Zhang X, Li J (2013) The relationship between structure and activity of MoO3-CeO2 catalysts for NO removal: influences of acidity and reducibility. Chem Commun 49:6215–6217

    Article  CAS  Google Scholar 

  13. Ding W, Li S, Meitzner GD, Iglesia E (2000) Methane conversion to aromatics on Mo/H-ZSM5: structure of molybdenum species in working catalysts. J Phys Chem B 105:506–513

    Article  Google Scholar 

  14. Borry RW, Kim YH, Huffsmith A, Reimer JA, Iglesia E (1999) Structure and density of Mo and acid sites in Mo-exchanged H-ZSM5 catalysts for non oxidative methane conversion. J Phys Chem B 103:5787–5796

    Article  CAS  Google Scholar 

  15. W. Ding, G.D. Meitzner, E. Iglesia(2002) The effects of silanation of external acid sites on the structure and catalytic behavior of Mo/H–ZSM5. J Catal 206 14–22.

    Article  CAS  Google Scholar 

  16. W. Li, G.D. Meitzner, R.W. Borry Iii, E. Iglesia(2000) Raman and X-Ray Absorption studies of Mo species in Mo/H-ZSM5 catalysts for non-oxidative CH4 reactions. J. Catal 191 373–383.

    Article  CAS  Google Scholar 

  17. Savinelli RO, Scott SL (2010) Wavelet transform EXAFS analysis of mono- and dimolybdate model compounds and a Mo/HZSM-5 dehydroaromatization catalyst. Phys Chem Chem Phys 12:5660–5667

    Article  CAS  Google Scholar 

  18. Y.-H. Kim, R.W. Borry Iii, E. Iglesia(2000) Genesis of methane activation sites in Mo-exchanged H–ZSM-5 catalysts. Micropor Mesopor Mater 35–36 495–509.

    Article  Google Scholar 

  19. B. Li, S. Li, N. Li, H. Chen, W. Zhang, X. Bao, B. Lin(2006) Structure and acidity of Mo/ZSM-5 synthesized by solid state reaction for methane dehydrogenation and aromatization, Micropor Mesopor Mater 88 244–253.

    Article  CAS  Google Scholar 

  20. Z.R. Ismagilov, E.V. Matus, L.T. Tsikoza.(2008) Direct conversion of methane on Mo/ZSM-5 catalysts to produce benzene and hydrogen: achievements and perspectives. Energy Environ Sci 1 526–541.

    Article  CAS  Google Scholar 

  21. Ma D, Zhu Q, Wu Z, Zhou D, Shu Y, Xin Q, Xu Y, Bao X (2005) The synergic effect between Mo species and acid sites in Mo/HMCM-22 catalysts for methane aromatization. Phys Chem Chem Phys 7:3102–3109

    Article  CAS  Google Scholar 

  22. Ma D, Han X, Zhou D, Yan Z, Fu R, Xu Y, Bao X, Hu H, S.C.F. Au-Yeung (2002) Towards guest-zeolite interactions: an NMR spectroscopic approach. Chem Eur J 8:4557–4561

    Article  CAS  Google Scholar 

  23. H. Minming, R.F. Howe, Characterization of MoY zeolites prepared by aqueous ion exchange. J Catal 108 (1987) 283–293.

    Article  Google Scholar 

  24. Zhou D, Ma D, Liu X, Bao X (2001) Study with density functional theory method on methane dehydro-aromatization over Mo/HZSM-5 catalysts I: optimization of active Mo species bonded to ZSM-5 zeolite. J Chem Phys 114:9125–9129

    Article  CAS  Google Scholar 

  25. D. Ma, Y. Shu, X. Bao, Y. Xu(2000) Methane dehydro-aromatization under nonoxidative conditions over Mo/HZSM-5 catalysts: EPR study of the Mo species on/in the HZSM-5 zeolite. J Catal 189 314–325.

    Article  CAS  Google Scholar 

  26. Xu Y, Liu S, Guo X, Wang L, Xie M (1994) Methane activation without using oxidants over Mo/HZSM-5 zeolite catalysts. Catal Lett 30:135–149

    Article  CAS  Google Scholar 

  27. L.A. Pine, P.J. Maher, W.A. Wachter(1984) Prediction of cracking catalyst behavior by a zeolite unit cell size model. J Catal 85 466–476.

    Article  CAS  Google Scholar 

  28. Zhou D, Ma D, Wang Y, Liu X, Bao X (2003) Study with density functional theory method on methane C–H bond activation on the MoO2/HZSM-5 active center. Chem Phys Lett 373:46–51

    Article  CAS  Google Scholar 

  29. Tessonnier J-P, Louis B, Rigolet S, Ledoux MJ, Pham-Huu C (2008) Methane dehydro-aromatization on Mo/ZSM-5: about the hidden role of Brønsted acid sites. Appl Catal A 336:79–88

    Article  CAS  Google Scholar 

  30. Tessonnier J-P, Louis B, Walspurger S, Sommer J, Ledoux M-J, Pham-Huu C (2006) Quantitative measurement of the Brönsted acid sites in solid acids: toward a single-site design of Mo-modified ZSM-5 zeolite. J Phys Chem B 110:10390–10395

    Article  CAS  Google Scholar 

  31. M.J. Rice, A.K. Chakraborty, A.T. Bell (1999)Al next nearest neighbor, ring occupation, and proximity statistics in ZSM-5. J Catal 186:222–227.

    Article  CAS  Google Scholar 

  32. Yan Z, Zuo Z, Li Z, Zhang J (2014) A cluster DFT study of NH3 and NO adsorption on the (MoO2)2+/HZSM-5 surface: Lewis versus Brønsted acid sites. Appl Surf Sci 321:339–347

    Article  CAS  Google Scholar 

  33. Calatayud M, Mguig B, Minot C (2004) Modeling catalytic reduction of NO by ammonia over V2O5, Surf. Sci Rep 55:169–236

    Article  CAS  Google Scholar 

  34. Busca G, Larrubia MA, Arrighi L, Ramis G (2005) Catalytic abatement of NOx: Chemical and mechanistic aspects. Catal Today 107–108:139–148

    Article  Google Scholar 

  35. H. Yao, Y. Chen, Z. Zhao, Y. Wei, Z. Liu, D. Zhai, B. Liu, C. Xu(2013) Periodic DFT study on mechanism of selective catalytic reduction of NO via NH3 and O2 over the V2O5 (001) surface: Competitive sites and pathways J. Catal 305:67–75.

    Article  CAS  Google Scholar 

  36. Soyer S, Uzun A, Senkan S, Onal I (2006) A quantum chemical study of nitric oxide reduction by ammonia (SCR reaction) on V2O5 catalyst surface. Catal Today 118:268–278

    Article  CAS  Google Scholar 

  37. Cao F, Su S, Xiang J, Sun L, Hu S, Zhao Q, Wang P, Lei S (2012) Density functional study of adsorption properties of NO and NH3 over CuO/γ-Al2O3 catalyst. Appl Surf Sci 261:659–664

    Article  CAS  Google Scholar 

  38. R.Q. Long, R.T. Yang(2002) Reaction mechanism of selective catalytic reduction of NO with NH3 over Fe-ZSM-5 catalyst. J. Catal 207:224–231.

    Article  CAS  Google Scholar 

  39. D. Fang, F. He, D. Li, J. Xie(2013) First principles and experimental study of NH3 adsorptions on MnOx surface. Appl Surf Sci 285:215–219.

    Article  CAS  Google Scholar 

  40. Lowenstein W (1954) The distribution of aluminium in the tetrahedra of silicates and aluminates. Am Mineral 39:92–96

    Google Scholar 

  41. Zhou D, Zhang Y, Zhu H, Ma D, Bao X (2007) The structure, stability, and reactivity of Mo-oxo species in H-ZSM5 Zeolites: density functional theory study. J Phys Chem C 111:2081–2091

    Article  CAS  Google Scholar 

  42. Delley B (1990) An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92:508–517

    Article  CAS  Google Scholar 

  43. Delley B (1996) Fast calculation of electrostatics in crystals and large molecules. J Phys Chem 100:6107–6110

    Article  CAS  Google Scholar 

  44. Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45:13244–13249

    Article  CAS  Google Scholar 

  45. Dolg M, Wedig U, Stoll H, Preuss H (1987) Energy-adjusted abinitio pseudopotentials for the first row transition elements. J Chem Phys 86:866–872

    Article  CAS  Google Scholar 

  46. Bergner A, Dolg M, Küchle W, Stoll H, Preuß H (1993) Ab initio energy-adjusted pseudopotentials for elements of groups 13–17. Mol Phys 80:1431–1441

    Article  CAS  Google Scholar 

  47. Mulliken RS (1955) Electronic population analysis on LCAO–MO molecular wave functions. I. J Chem Phys 23:1833–1840

    Article  CAS  Google Scholar 

  48. Mulliken RS (1955) Electronic population analysis on LCAO–MO molecular wave functions. II. Overlap populations, bond orders, and covalent bond energies. J Chem Phys 23:1841–1846

    Article  CAS  Google Scholar 

  49. Mulliken RS (1955) Electronic population analysis on LCAO-MO molecular wave functions. III. Effects of hybridization on overlap and gross AO populations. J Chem Phys 23:2338–2342

    Article  CAS  Google Scholar 

  50. Mulliken RS (1955) Electronic population analysis on LCAO-MO molecular wave functions. IV. Bonding and antibonding in LCAO and valence-bond theories. J Chem Phys 23:2343–2346

    Article  CAS  Google Scholar 

  51. Mayer I (1983) Charge, bond order and valence in the AB initio SCF theory. Chem Phys Lett 97:270–274

    Article  CAS  Google Scholar 

  52. I. Mayer, Bond orders and valences: role of d-orbitals for hypervalent sulphur. J Mol Struct THEOCHEM 149 (1987) 81–89.

    Article  Google Scholar 

  53. Tsumuraya T, Shishidou T, Oguchi T (2007) First-principles study on lithium and magnesium nitrogen hydrides for hydrogen storage. J Alloys Compd 446–447:323–327

    Article  Google Scholar 

  54. Lide DR (2000) CRC Handbook of chemistry and physics. CRC Press, Boca Raton

    Google Scholar 

  55. Schröder K.-P, Sauer J, Leslie M, Richard C, Catlow A (1992) Siting of AI and bridging hydroxyl groups in ZSM-5: a computer simulation study. Zeolites 12:20–23.

    Article  Google Scholar 

  56. Nachtigallova D, Nachtigall P, Sierka M, Sauer J (1999) Coordination and siting of Cu+ ions in ZSM-5: a combined quantum mechanics/interatomic potential function study. Phys Chem Chem Phys 1:2019–2026

    Article  CAS  Google Scholar 

  57. Sierka M, Sauer J (1997) Structure and reactivity of silica and zeolite catalysts by a combined quantum mechanics[ndash]shell-model potential approach based on DFT. Faraday Discuss 106:41–62

    Article  CAS  Google Scholar 

  58. Illas F, López N, García-Hernández M, de P.R. Moreira I (1998) Theoretical study of NH3 chemisorption on Pt(111). J Mol Struct THEOCHEM 458:93–98.

    Article  Google Scholar 

  59. García-Hernández M, López N, d.P.R. Moreira I, Paniagua JC, Illas F (1999) Ab initio cluster model approach to the chemisorption of NH3 on Pt(111). Surf Sci 430:18–28

    Article  Google Scholar 

  60. Diawara B, Joubert L, Costa D, Marcus P, Adamo C (2009) Ammonia on Ni(111) surface studied by first principles: bonding, multi layers structure and comparison with experimental IR and XPS data. Surf Sci 603:3025–3034

    Article  CAS  Google Scholar 

  61. Lanzani G, Laasonen K (2010) NH3 adsorption and dissociation on a nanosized iron cluster. Int J Hydrogen Energy 35:6571–6577

    Article  CAS  Google Scholar 

  62. Liu R, Shen W, Zhang J, Li M (2008) Adsorption and dissociation of ammonia on Au(111) surface: a density functional theory study. Appl Surf Sci 254:5706–5710

    Article  CAS  Google Scholar 

  63. Anstrom M, Topsøe N.Y, Dumesic J.A. (2003) Density functional theory studies of mechanistic aspects of the SCR reaction on vanadium oxide catalysts. J Catal 213:115–125.

    Article  CAS  Google Scholar 

  64. Cheng D, Lan J, Cao D, Wang W (2011) Adsorption and dissociation of ammonia on clean and metal-covered TiO2 rutile (110) surfaces: a comparative DFT study. Appl Catal B 106:510–519

    Article  CAS  Google Scholar 

  65. Hadjiivanov K (1998) FTIR study of CO and NH3 co-adsorption on TiO2 (rutile). Appl Surf Sci 135:331–338

    Article  CAS  Google Scholar 

  66. Papakondylis A, Sautet P (1996) Ab initio study of the structure of the α-MoO3 solid and study of the adsorption of H2O and CO molecules on its (100) surface. J Phys Chem 100:10681–10688

    Article  CAS  Google Scholar 

  67. Yin X, Han H, Gunji I, Endou A, Cheettu Ammal SS, Kubo M, Miyamoto A (1999) NH3 adsorption on the Brönsted and Lewis acid sites of V2O5(010): a periodic density functional study. J Phys Chem B 103:4701–4706

    Article  CAS  Google Scholar 

  68. Yao H, Chen Y, Wei Y, Zhao Z, Liu Z, Xu C (2012) A periodic DFT study of ammonia adsorption on the V2O5 (001), V2O5 (010) and V2O5 (100) surfaces: Lewis versus Brönsted acid sites. Surf Sci 606:1739–1748

    Article  CAS  Google Scholar 

  69. Ramis G, Busca G, Bregani F, P. Forzatti* (1990) Fourier transform-infrared study of the adsorption and co adsorption of nitric oxide, nitrogen dioxide and ammonia on vanadia-titania and mechanism of selective catalytic reduction. Appl Catal 64:259–278

    Article  CAS  Google Scholar 

  70. Pittman RM, Bell AT (1994) Raman investigations of NH3 adsorption on TiO2, Nb2O5, and Nb2O5/TiO2. Catal Lett 24:1–13

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank reviewers for their valuable suggestions and the financial support from National Natural Science Foundation of China (No. 21073131), State Key Laboratory Breeding Base of Coal Science and Technology Co-founded by Shanxi Province and the Ministry of Science and Technology, Taiyuan University of Technology (No. MKX201301), the Key Technologies R&D Program of Shanxi Province of China (No. 20140313002-2) and Youth Foundation of Taiyuan University of Technology (No. 1205-04020202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaogang Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Z., Shi, S., Li, Z. et al. The Initial Stages of NH3 and NO Adsorption On (Mo2O5)2+/HZSM-5 with Two Adjacent Unsaturated fiveFold Mo Sites in SCR Reaction: A Cluster DFT Study. Catal Lett 147, 1006–1018 (2017). https://doi.org/10.1007/s10562-017-2000-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-017-2000-1

Keywords

Navigation