Skip to main content
Log in

MnFe/Al2O3 Catalyst Synthesized by Deposition Precipitation for Low-Temperature Selective Catalytic Reduction of NO with NH3

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Mn–Fe/Al2O3 and Mn–Fe/TiO2 catalysts have been prepared by impregnation (IMP) and deposition precipitation (DP) and characterized with several techniques including: XRDP, N2-physisorption, NH3-TPD, H2-TPR, TGA and XPS. 40 wt% Mn0.75Fe0.25/Al2O3 prepared with ammonia carbamate as precipitating agent showed the same superior low temperature selective catalytic reduction of NO with NH3 as did 25 wt% Mn0.75Fe0.25/TiO2 prepared in the same way. Both catalysts were much more active when prepared by DP instead of IMP. 25 wt% Mn0.75Fe0.25/TiO2 and 40 wt% Mn0.75Fe0.25/Al2O3 prepared by DP were exposed to a gas containing 20 vol% H2O at temperatures between 140 and 200 °C and compared to an industrial V2O5–WO3/TiO2 catalyst tested at 220 °C. Both homemade catalysts were severely inhibited by 20 vol% H2O. However, used at 180 °C they match the activity of the industrial reference at 220 °C.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bosch H, Janssen FJJG (1988) Catal Today 2:369–379

    Article  CAS  Google Scholar 

  2. Busca G, Lietti L, Ramis G, Berti F (1998) Appl Catal B 18:1–36

    Article  CAS  Google Scholar 

  3. Parvulescu VI, Grange P, Delmon B (1998) Catal Today 46:233–316

    Article  CAS  Google Scholar 

  4. Ando J (1990) Flue gas cleaning technology of the world. Coal Mining Research Institute, Tokyo

    Google Scholar 

  5. Smirniotis PG, Peńa DA, Uphade BS (2001) Angew Chem Int Ed 40:2479–2482

    Article  CAS  Google Scholar 

  6. Roy S, Hegde MS, Madras G (2009) Appl Energy 86:2283–2297

    Article  CAS  Google Scholar 

  7. Sultana A, Sasaki M, Hamada H (2012) Catal Today 185:284–289

    Article  CAS  Google Scholar 

  8. Long RQ, Yang RT, Chang R (2002) Chem Commun 5:452–453

    Article  Google Scholar 

  9. Kim Y, Kwon HY, Nam I, Choung JW, Kil JK, Kim H, Cha M, Yeo GK (2010) Catal Today 151:244–250

    Article  CAS  Google Scholar 

  10. Wu Z, Jiang B, Liu Y (2008) Appl Catal B 79:347–355

    Article  CAS  Google Scholar 

  11. Roy S, Viswanath B, Hegde MS, Madras G (2008) J Phys Chem C 112:6002–6012

    Article  CAS  Google Scholar 

  12. Qi G, Yang RT (2003) Appl Catal B 44:217–225

    Article  CAS  Google Scholar 

  13. Qi G, Yang RT, Chang R (2004) Appl Catal B 51:93–106

    Article  CAS  Google Scholar 

  14. Peńa DA, Uphade BS, Smirniotis PG (2004) J Catal 221:421–431

    Article  Google Scholar 

  15. Thirupathi B, Smirniotis PG (2012) J Catal 288:74–83

    Article  CAS  Google Scholar 

  16. Kang M, Park ED, Kim JM, Ye JE (2007) Appl Catal A 327:261–269

    Article  CAS  Google Scholar 

  17. Ettireddy PR, Ettireddy N, Mamedov S, Boolchand P, Smirniotis PG (2007) Appl Catal B 76:123–134

    Article  CAS  Google Scholar 

  18. Kapteijn F, Singoredjo L, Andreini A, Moulijn JA (1994) Appl Catal B 3:173–189

    Article  CAS  Google Scholar 

  19. Singoredjo L, Korver R, Kapteijn F, Mouhjn J (1992) Appl Catal B 1:297–316

    Article  CAS  Google Scholar 

  20. Putluru SSR, Schill L, Jensen AD, Siret B, Tabariesc F, Fehrmann R (2015) Appl Catal B 165:628–635

    Article  CAS  Google Scholar 

  21. Smirniotis PG, Srrekanth PM, Pena DA, Jenkins RG (2006) Ind Eng Chem Res 45:6436–6443

    Article  CAS  Google Scholar 

  22. Casapu M, Kröcher O, Elsener M (2012) Appl Catal B 88:413–419

    Article  Google Scholar 

  23. Hu P, Huang Z, Hua W, Gu X, Tang X (2012) Appl Catal A 437–438:139–148

    Google Scholar 

  24. Sheng Z, Hu Y, Xue J, Wang X, Liao W (2012) Environ Technol 33:2421–2428

    Article  CAS  Google Scholar 

  25. Kijlstra WS, Daamen JCM, van de Graaf JM (1996) Appl Catal B 7:337–357

    Article  CAS  Google Scholar 

  26. Li J, Chang H, Ma L, Hao J (2011) Catal Today 175:147–156

    Article  CAS  Google Scholar 

  27. Yang S, Wang C, Li J, Yan N, Ma L, Chang H (2011) Appl Catal B 110:71–80

    Article  CAS  Google Scholar 

  28. Moon SW, Lee G, Park SS, Hong S (2004) React Kinet Catal Lett 82:303–310

    Article  CAS  Google Scholar 

  29. Babu NS, Lingaiah N, Gopinath R, Reddy PSS, Prasad PSS (2007) J Phys Chem C 111:6447–6453

    Article  CAS  Google Scholar 

  30. Reddy PSS, Pasha N, Rao MGVC, Lingaiah N, Suryanarayana I, Prasad PSS (2007) Catal Commun 8:1406–1410

    Article  CAS  Google Scholar 

  31. Gopinath R, Babu NS, Kumar JV, Lingaiah N, Prasad PSS (2008) Catal Lett 120:312–319

    Article  CAS  Google Scholar 

  32. Møller N (2013) Manganoxid-baseret lav temperature SCR katalysatorer (Bachelor thesis). Technical University of Denmark, Kgs. Lyngby. pp 49–51

Download references

Acknowledgments

This work is financially supported by Energinet.dk through the PSO project 10521.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasmus Fehrmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schill, L., Putluru, S.S.R., Jensen, A.D. et al. MnFe/Al2O3 Catalyst Synthesized by Deposition Precipitation for Low-Temperature Selective Catalytic Reduction of NO with NH3 . Catal Lett 145, 1724–1732 (2015). https://doi.org/10.1007/s10562-015-1576-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-015-1576-6

Keywords

Navigation