Skip to main content
Log in

Particle Size or Electronic Effect? An XAS Study of Re@Pd Overlayer Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Re@Pd (core@overlayer) catalysts are analyzed via X-ray absorption spectroscopy to correlate structural and electronic properties with previous reactivity results. The ethylene hydrogenation turnover frequency of the Re–Pd bimetallic and the Re@Pd catalysts is much lower than that of the pure Pd. A reduction of activity agrees with the computationally predicted properties of the overlayer catalysts and indicates that the overlayer catalysts have been synthesized. The FEFF fitted EXAFS yields a Pd–Pd inter-atomic distance in the Re@Pd SD small particle (2.7 nm) catalyst of 2.79 Å and in the Re@Pd SD large particle (6.3 nm) catalyst of 2.76 Å. The fitted Pd–Pd inter-atomic distance of Pd foil is 2.74 Å. The small particle overlayer Re@Pd SD catalyst is also longer than the Pd–Pd inter-atomic distance seen in the, as synthesized, structureless bimetallic Re–Pd (2.73 Å). The disparity in calculated inter-atomic distances indicates an electronic effect is being exerted upon the disperse Pd atoms by the larger Re crystals and vice versa. The Pd K-edge and Re LIII-edge white line data also show the electronic interaction between the Pd overlayer and the core Re atoms. The Pd white line of the overlayer catalysts shifted up relative to Pd foil indicating Pd d-band broadening as a result of the interaction of Pd with Re. The Re d-band of the overlayer catalysts narrowed, which is evidenced by the decreased white line absorption relative to Re foil. These observed changes in the Pd and Re d-band are consistent with computational predictions for catalysts with overlayer structures.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Davis ME, Davis RJ (2003) Fundamentals of chemical reaction engineering. McGraw-Hill, New York

    Google Scholar 

  2. Massard R, Uzio D, Thomazeau C, Pichon C, Rousset JL, Bertolini JC (2007) J Catal 245:133–143

  3. Juszczyk W, Karpinski Z (2001) Appl Catal Gen 206:67–78

    Article  CAS  Google Scholar 

  4. Skoglund MD, Holles JH (2013) Catal Lett 143:966–974

    Article  CAS  Google Scholar 

  5. Hwu HH, Eng J, Chen JG (2002) J Am Chem Soc 124:702–709

    Article  CAS  Google Scholar 

  6. Pallassana V, Neurock M, Coulston GW (1999) J Phys Chem B 103:8973–8983

    Article  CAS  Google Scholar 

  7. Ruban A, Hammer B, Stoltze P, Skriver HL, Norskov JK (1997) J Mol Catal Chem 115:421–429

  8. Christoffersen E, Liu P, Ruban A, Skriver HL, Norskov JK (2001) J Catal 199:123–131

  9. Pallassana V, Neurock M, Hansen LB, Hammer B, Norskov JK (1999) Phys Rev B 60:6146–6154

  10. Pallassana V, Neurock M (2000) J Catal 191:301–317

    Article  CAS  Google Scholar 

  11. Pallassana V, Neurock M, Hansen LB, Norskov JK (2000) J Chem Phys 112:5435–5439

    Article  CAS  Google Scholar 

  12. Latusek MP, Spigarelli BP, Heimerl RM, Holles JH (2009) J Catal 263:306–314

    Article  CAS  Google Scholar 

  13. Latusek MP, Heimerl RM, Spigarelli BP, Holles JH (2009) Appl Catal Gen 358:79–87

    Article  CAS  Google Scholar 

  14. Bazin D, Guczi L (1999) Recent Res Dev Phys Chem 3:387–418

    CAS  Google Scholar 

  15. Holles JH, Davis RJ (2000) J Phys Chem B 104:9653–9660

    Article  CAS  Google Scholar 

  16. Shibata T, Bunker BA, Zhang Z, Meisel D, Vardeman II CF, Gezelter JD (2002) J Am Chem Soc 124:11989–11996

  17. Vijay S, Wolf EE, Miller JT, Kropf AJ (2004) Appl Catal Gen 264:125–130

    Article  CAS  Google Scholar 

  18. Van Zon JBAD, Koningsberger DC, van’t Blik HFJ, Sayers DE (1985) J Chem Phys 82:5742–5754

    Article  Google Scholar 

  19. Cook JW, Sayers DE (1981) J Appl Phys 52:5024–5031

    Article  CAS  Google Scholar 

  20. Bordiga S, Groppo E, Agostini G, van Bokhoven JA, Lamberti C (2013) Chem Rev 113:1736–1850

  21. Ravel B, Newville M (2005) J Syncrotron Radiat 12:537–541

    Article  CAS  Google Scholar 

  22. Downs RT, Hall-Wallace M (2003) Am Mineral 88:247–250

    CAS  Google Scholar 

  23. Koningsberger DC, Mojet BL, van Dorssen GE, Ramaker DE (2000) Top Catal 10:143–155

    Article  CAS  Google Scholar 

  24. Penner-Hahn JE (2001) X-ray absorption spectroscopy. Wiley, New York

    Google Scholar 

  25. Greenwood NN, Earnshaw A (1997) Chemistry of the elements. Butterworth-Heinemann, Oxford

    Google Scholar 

  26. Mansour AN, Cook JW, Sayers DE (1984) J Phys Chem 88:2330–2334

    Article  CAS  Google Scholar 

  27. Blum L, Abruna HD, White J, Gordon II JG, Borges GL, Samant MG, Melroy OR (1986) J Chem Phys 85:6732

  28. McBreen J, O’Grady WE, Tourillon G, Dartyge E, Fontaine A (1991) J Electroanal Chem 307:229–240

  29. Mukerjee S, Srinivasan S, Soriaga MP, McBreen J (1995) J Electrochem Soc 142:1409–1422

    Article  CAS  Google Scholar 

  30. Morris AR, Skoglund MD, Holles JH (2015) Appl Catal Gen 489:98–110

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge funding support from Funding provided by National Science Foundation, Chemical, Bioengineering, Environmental and Transport Systems [CBET-0933017]. MRCAT operations are supported by the Department of Energy and the MRCAT member institutions. Dr. Jeff Miller for all of the XAS sampling equipment. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. This work was funded in-part by the National Science Foundation and University of Wyoming EE-Nanotechnology Program (NSF-40243). This material is based upon work supported by the University of Wyoming School of Energy Resources through its Graduate Assistantship program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph H. Holles.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morris, A.R., Skoglund, M.D. & Holles, J.H. Particle Size or Electronic Effect? An XAS Study of Re@Pd Overlayer Catalysts. Catal Lett 145, 840–850 (2015). https://doi.org/10.1007/s10562-015-1491-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-015-1491-x

Keywords

Navigation