Skip to main content
Log in

Roles Investigation of Promoters in K/Cu–Zn Catalyst and Higher Alcohols Synthesis from CO2 Hydrogenation over a Novel Two-Stage Bed Catalyst Combination System

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A novel two-stage bed catalyst combination system composed of a low-temperature RWGS catalyst and another high-temperature modified F–T synthesis catalyst was developed to higher alcohols synthesis from CO2 hydrogenation in this work. Firstly, the roles of K2O and ZnO promoters in Cu-based catalyst were investigated by N2 adsorption/desorption, XRD, H2-TPR, CO2-TPD and RWGS reaction test. Results showed that K2O plays a positive role in improving the CuO–ZnO interaction and ZnO acts as a support for promoting the dispersion of copper species and improving the unit surface area of copper metal. Well dispersed copper in contact with the surface of ZnO particles leads to the ideal performances for RWGS reaction accompanying with methanol synthesis over CuZn1.0K0.15 catalyst due to the synergetic promotion effect between K2O and ZnO promoters. Then, the optimization of loading mode and loading volume ratio of catalyst combination system was conducted. It was indicated that the higher alcohols can be effectively synthesized from CO2 hydrogenation over the optimal CZK(1.5)//CFCK(4.5) two-stage bed catalyst combination system due to the thermal coupling effect and product conversion coupling effect of these catalysts.

Graphical Abstract

The higher alcohols synthesis from CO2 hydrogenation was effectively conducted over the CZK(1.5)//CFCK(4.5) two-stage bed catalyst combination system due to the thermal coupling effect and product conversion coupling effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Markewitz P, Kuckshinrichs W, Leitner W, Linssen J, Zapp P, Bongartz R, Schreiber A, Muller TE (2012) Energy Environ Sci 5:7281–7305

    Article  CAS  Google Scholar 

  2. Xu XD, Moulijn JA (1996) Energy Fuels 10:305–325

    Article  Google Scholar 

  3. Park J-N, Mcfarland EW (2009) J Catal 266:92–97

    Article  CAS  Google Scholar 

  4. Aziz MAA, Jalil AA, Triwahyono S, Mukti RR, Taufiq-Yap YH, Sazegar MR (2014) Appl Catal B: Environ 147:359–368

    Article  CAS  Google Scholar 

  5. Sharma S, Hu ZP, Zhang P, Mcfarland EW, Metiu H (2011) J Catal 278:297–309

    Article  CAS  Google Scholar 

  6. Yang YX, White MG, Liu P (2011) J Phys Chem C 116:248–256

    Article  Google Scholar 

  7. Fujitani T, Nakamura I, Ueno S, Uchijima T, Nakamura J (1997) Appl Surf Sci 121(122):583–586

    Article  Google Scholar 

  8. Nakamura J, Nakamura I, Uchijima T (1995) Catal Lett 31:325–331

    Article  CAS  Google Scholar 

  9. Grabow LC, Mavrikakis M (2011) ACS Catal 1:365–384

    Article  CAS  Google Scholar 

  10. Schaub T, Paciello RA (2011) Angew Chem Int Ed 50:7278–7282

    Article  CAS  Google Scholar 

  11. Lee D-K, Kim D-S, Kim S-W (2001) Appl Organomet Chem 15:148–150

    Article  CAS  Google Scholar 

  12. Ding FS, Zhang AF, Liu M, Guo XW, Song CS (2014) RSC Adv 4:8930–8938

    Article  CAS  Google Scholar 

  13. Gao WG, Wang H, Wang YH, Guo W, Jia MY (2013) J Rare Earth 31:470–476

    Article  CAS  Google Scholar 

  14. Li SG, Guo HJ, Luo CR, Zhang HR, Xiong L, Chen XD, Ma LL (2013) Catal Lett 143:345–355

    Article  CAS  Google Scholar 

  15. Xue C, Zhao XQ, Liu CG, Chen LJ, Bai FW (2013) Biotechnol Adv 31:1575–1584

    Article  CAS  Google Scholar 

  16. Zverlov VV, Berezina O, Velikodvorskaya GA, Schwarz WH (2006) Appl Microbiol Biotechnol 71:587–597

    Article  CAS  Google Scholar 

  17. Deluga GA, Salge JR, Schmidt LD, Verykios XE (2004) Science 303:993–997

    Article  CAS  Google Scholar 

  18. Centi G, Perathoner S (2009) Catal Today 148:191–205

    Article  CAS  Google Scholar 

  19. Wang W, Wang SP, Ma XB, Gong JL (2011) Chem Soc Rev 40:3369–4260

    Article  Google Scholar 

  20. Saeidi S, Amin NAS, Rahimpour MR (2014) J CO2 Util 5:66–81

  21. Trovarelli A, Mustazza C, Dolcetti G, KasˇPar J, Graziani M (1990) Appl Catal 65:129–142

    Article  CAS  Google Scholar 

  22. Inui T, Yamamoto T, Inoue M, Hara H, Takeguchi T, Kim J-B (1999) Appl Catal A: Gen 186:395–406

    Article  CAS  Google Scholar 

  23. Kishida M, Yamada K, Nagata H, Wakabayashi K (1994) Chem Lett 23:555–556

    Article  Google Scholar 

  24. Dubois J-L, Sayama K, Arakawa H (1992) Chem Lett 21:5–8

    Article  Google Scholar 

  25. Yamamoto T, Inui T (1998) Stud Surf Sci Catal 114:513–516

    Article  CAS  Google Scholar 

  26. Takagawa M, Okamoto A, Fujimura H, Izawa Y, Arakawa H (1998) Stud Surf Sci Catal 114:525–528

    Article  CAS  Google Scholar 

  27. Lachowska M (1999) React Kinet Catal Lett 67:149–154

    Article  CAS  Google Scholar 

  28. Li SG, Guo HJ, Zhang HR, Luo J, Xiong L, Luo CR, Chen XD (2013) Adv Mater Res 772:275–280

    Article  Google Scholar 

  29. Guo HJ, Xiong L, Luo CR, Ding F, Chen XD, Chen Y (2011) Acta Phys-Chim Sin 27:2632–2638 (in Chinese)

    CAS  Google Scholar 

  30. Choi Y, Futagami K, Fujitani T, Nakamuraa J (2001) Appl Catal A: Gen 208:163–167

    Article  CAS  Google Scholar 

  31. Grandjean D, Pelipenko V, Batyrev ED, van den Heuvel JC, Khassin AA, Yurieva TM, Weckhuysen BM (2011) J Phys Chem C 115:20175–20191

    Article  CAS  Google Scholar 

  32. Chen C-S, Cheng W-H, Lin S-S (2003) Appl Catal A: Gen 238:55–67

    Article  CAS  Google Scholar 

  33. Guo HJ, Xiong L, Luo CR, Li J, Ding F, Chen XD, Chen Y (2011) Adv Mater Res 347–353:3691–3694

    Article  Google Scholar 

  34. Fujitani T, Nakamura J (1998) Catal Lett 56:119–124

    Article  CAS  Google Scholar 

  35. Maack M, Friis-Jensen H, Sckerl S, Larsen JH, Chorkendorff I (2003) Top Catal 22:151–160

    Article  CAS  Google Scholar 

  36. Liu ZJ, Liao JJ, Tan JP, Li DD (2000) Ind Catal 8:60–64 (in Chinese)

    CAS  Google Scholar 

  37. Choi Y, Futagami K, Fujitani T, Nakamura J (2001) Catal Lett 73:27–31

    Article  CAS  Google Scholar 

  38. Nakamura J, Nakamura I, Uchijima T, Kanai Y, Watanabe T, Saito M, Fujitani T (1996) J Catal 160:65–75

    Article  CAS  Google Scholar 

  39. Yang YX, Evans J, Rodriguez JA, White MG, Liu P (2010) Phys Chem Chem Phys 12:9909–9917

    Article  CAS  Google Scholar 

  40. Nakamura I, Fujitani T, Uchijima T, Nakamura J (1998) Surf Sci 400:387–400

    Article  CAS  Google Scholar 

  41. Waugh KC (1999) Catal Lett 58:163–165

    Article  CAS  Google Scholar 

  42. Stone F, Waller D (2003) Top Catal 22:305–318

    Article  CAS  Google Scholar 

  43. Fierro G, Lo Jacono M, Inversi M, Porta P, Cioci F, Lavecchia R (1996) Appl Catal A: Gen 137:327–348

    Article  CAS  Google Scholar 

  44. Fujita S-I, Usui M, Takezawa N (1992) J Catal 134:220–225

    Article  CAS  Google Scholar 

  45. Spivey JJ, Dooley KM (2006) Catalysis 19:1–40

    Article  Google Scholar 

  46. Guo HJ, Li SG, Zhang HR, Peng F, Xiong L, Yang J, Wang C, Chen XD, Chen Y (2014) Ind Eng Chem Res 53:123–131

    Article  CAS  Google Scholar 

  47. Rahimpour MR (2007) Chem Eng Commun 194:1638–1653

    Article  CAS  Google Scholar 

  48. Rahimpour MR (2008) Fuel Process Technol 89:556–566

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the joint foundation supported by the Natural Science Foundation of China and Shenhua Group Corp. (U1261116), the National Science-technology Support Plan Project of China (2012BAD32B07), the National Natural Science Foundation of China (21406229), the Project of Jiangsu Province Science and Technology (BE2013083, BE2014101), and the Project of Guangzhou Science and Technology (2013J4300031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinde Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, H., Li, S., Peng, F. et al. Roles Investigation of Promoters in K/Cu–Zn Catalyst and Higher Alcohols Synthesis from CO2 Hydrogenation over a Novel Two-Stage Bed Catalyst Combination System. Catal Lett 145, 620–630 (2015). https://doi.org/10.1007/s10562-014-1446-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-014-1446-7

Keywords

Navigation