Skip to main content
Log in

Synergistic Effects in Porous Mn–Co Mixed Oxide Nanorods Enhance Catalytic Deep Oxidation of Benzene

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A series of Mn–Co mixed oxide nanorods with homogeneous worm-like pores were facilely prepared by a sol–gel chelating method. With incorporating Mnn+ into Co3O4, the formation of solid solution with spinel structure inhibits the growth of nanoparticles which is benefit to keep smaller crystal size and higher surface area. XPS and H2-TPR results indicate that there are more high manganese valence (Mn3+ and Mn4+) and adsorbed oxygen species as well as low-temperature reducibility for the mixed oxide catalysts, as a result of the strong synergistic effect between Mn and Co species in solid solution, which will play a key role in catalytic activity. The as-prepared catalysts were used for catalytic deep oxidation of benzene which is a typical carcinogenic VOC. The catalytic activities over the mixed oxides with varied mole ratio are much higher than that on the single MnOx or Co3O4. The Mn5Co5 sample showed the best activity with T90% for benzene conversions into CO2 were low to 237 °C at a high space velocity of 120,000 mL g−1 h−1.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Atkinson R (2000) Atmos Environ 34:2063

    Article  CAS  Google Scholar 

  2. Finlayson-Pitts BJ, Pitts JN (1997) Science 276:1045

    Article  CAS  Google Scholar 

  3. Jones AP (1999) Atmos Environ 33:4535

    Article  CAS  Google Scholar 

  4. Wolkoff P, Nielsen GD (2001) Atmos Environ 35:4407

    Article  CAS  Google Scholar 

  5. Foster KL, Fuerman RG, Economy J, Larson SM, Rood MJ (1992) Chem Mater 4:1068

    Article  CAS  Google Scholar 

  6. Spivey JJ (1987) Ind Eng Chem Res 26:2165

    Article  CAS  Google Scholar 

  7. Everaert K, Baeyens J (2004) J Hazard Mater 109:113

    Article  CAS  Google Scholar 

  8. Zuo S, Huang Q, Zhou R (2008) Catal Today 139:88

    Article  CAS  Google Scholar 

  9. Solsona B, Aylon E, Murillo R, Mastral AM, Monzonis A, Agouram S, Davies TE, Taylor SH, Garcia T (2011) J Hazard Mater 187:544

    Article  CAS  Google Scholar 

  10. Zhu Z, Lu G, Zhang Z, Guo Y, Guo Y, Wang Y (2013) ACS Catal 3:1154

    Article  CAS  Google Scholar 

  11. Mu Z, Li JJ, Duan MH, Hao ZP, Qiao SZ (2008) Catal Commun 9:1874

    Article  CAS  Google Scholar 

  12. Yang JS, Jung WY, Lee GD, Park SS, Jeong ED, Kim HG, Hong S-S (2008) J Ind Eng Chem 14:779

    Article  CAS  Google Scholar 

  13. Genuino HC, Dharmarathna S, Njagi EC, Mei MC, Suib SL (2012) J Phys Chem C 116:12066

    Article  CAS  Google Scholar 

  14. Xing T, Wan H, Shao Y, Han Y, Xu Z, Zheng S (2013) Appl Catal A 468:269

    Article  CAS  Google Scholar 

  15. Morales M, Agüero F, Cadus L (2013) Catal Lett 143:1003

    Article  CAS  Google Scholar 

  16. V. Galvita, M. Filez, H. Poelman, V. Bliznuk, G. Marin (2013) Catal Lett 1

  17. Tang X, Li Y, Huang X, Xu Y, Zhu H, Wang J, Shen W (2006) Appl Catal B 62:265

    Article  CAS  Google Scholar 

  18. Tang X, Xu Y, Shen W (2008) Chem Eng J 144:175

    Article  CAS  Google Scholar 

  19. Liotta LF, Ousmane M, Di Carlo G, Pantaleo G, Deganello G, Boreave A, Giroir-Fendler A (2008) Catal Lett 127:270

    Article  Google Scholar 

  20. Aranda A, Aylon E, Solsona B, Murillo R, Mastral AM, Sellick DR, Agouram S, Garcia T, Taylor SH (2012) Chem Commun (Camb) 48:4704

    Article  CAS  Google Scholar 

  21. Zhang Y, Qin Z, Wang G, Zhu H, Dong M, Li S, Wu Z, Li Z, Wu Z, Zhang J, Hu T, Fan W, Wang J (2013) Appl Catal B 129:172

    Article  CAS  Google Scholar 

  22. Hu L, Peng Q, Li Y (2008) J Am Chem Soc 130:16136

    Article  CAS  Google Scholar 

  23. Ye Q, Zhao J, Huo F, Wang D, Cheng S, Kang T, Dai H (2013) Microporous Mesoporous Mater 172:20

    Article  CAS  Google Scholar 

  24. Deng J, Zhang L, Dai H, Xia Y, Jiang H, Zhang H, He H (2010) J Phys Chem C 114:2694

    Article  CAS  Google Scholar 

  25. Tang W, Wu X, Li S, Shan X, Liu G, Chen Y (2015) Appl Catal B 162:110

    Article  CAS  Google Scholar 

  26. Zaki MI, Nohman AKH, Kappenstein C, Wahdan TM (1995) J Mater Chem 5:1081

    Article  CAS  Google Scholar 

  27. Yu C, Zhang L, Shi J, Zhao J, Gao J, Yan D (2008) Adv Funct Mater 18:1544

    Article  Google Scholar 

  28. Zhang R, Dai H, Du Y, Zhang L, Deng J, Xia Y, Zhao Z, Meng X, Liu Y (2011) Inorg Chem 50:2534

    Article  CAS  Google Scholar 

  29. Todorova S, Kolev H, Holgado JP, Kadinov G, Bonev C, Pereñíguez R, Caballero A (2010) Appl Catal B 94:46

    Article  CAS  Google Scholar 

  30. Tang W, Wu X, Li D, Wang Z, Liu G, Liu H, Chen Y (2014) J Mater Chem A 2:2544

    Article  CAS  Google Scholar 

  31. Santos VP, Pereira MFR, Órfão JJM, Figueiredo JL (2010) Appl Catal B 99:353

    Article  CAS  Google Scholar 

  32. Pérez H, Navarro P, Delgado JJ, Montes M (2011) Appl Catal A 400:238

    Article  Google Scholar 

  33. Ji K, Dai H, Deng J, Song L, Gao B, Wang Y, Li X (2013) Appl Catal B 129:539

    Article  CAS  Google Scholar 

  34. Chen C, Yu Y, Li W, Cao C, Li P, Dou Z, Song W (2011) J Mater Chem 21:12836

    Article  CAS  Google Scholar 

  35. Hou J, Li Y, Liu L, Ren L, Zhao X (2013) J Mater Chem A 1:6736

    Article  CAS  Google Scholar 

  36. Einaga H, Hyodo S, Teraoka Y (2010) Top Catal 53:629

    Article  CAS  Google Scholar 

  37. Liu F, Zuo S, Wang C, Li J, Xiao F-S, Qi C (2014) Appl Catal B 148–149:106

    Article  Google Scholar 

  38. He C, Yue L, Zhang X, Li P, Dou B, Ma C, Hao Z (2012) Asia-Pac J Chem Eng 7:705

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the strategic project of science and technology of Chinese Academy of Sciences (No. XDB05050000), the 863 Hi-tech Research and Development Program of China (Grant No.2012AA062702) and the National Natural Science Foundation of China (No. 51272253; No.51002154).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunfa Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, W., Li, W., Li, D. et al. Synergistic Effects in Porous Mn–Co Mixed Oxide Nanorods Enhance Catalytic Deep Oxidation of Benzene. Catal Lett 144, 1900–1910 (2014). https://doi.org/10.1007/s10562-014-1340-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-014-1340-3

Keywords

Navigation