Skip to main content
Log in

Fischer–Tropsch Synthesis Over CNT Supported Cobalt Catalysts: Role of Metal Nanoparticle Size on Catalyst Activity and Products Selectivity

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Nanoparticle size effects on catalyst activity and products selectivity of CNT supported cobalt catalysts in Fischer–Tropsch synthesis are studied. CNT supported cobalt catalysts prepared by two different methods (microemulsion and impregnation) are employed to yield higher hydrocarbons from synthesis gas. To achieve a series of catalysts with different Co particle size, water-to-surfactant molar ratio varied from 4 to 12. The results showed that the average particle sizes depended linearly upon the respective ratio and with decreasing the water content in microemulsion method, prepared cobalt particles to control a narrow nanoparticle size distribution with different water to surfactant ratios. The results show that cobalt-time yields increased substantially (from 3.5 to 2.9 × 10−3 mol CO/(mol(Co)s)), the site-time yields were decreased (from 26.9 to 37.0 × 10−3 s−1), C5+ selectivity and chain growth probability for hydrocarbons decreased when metal particle size reduced.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mondloch JE, Bayram E, Finke RG (2012) J Mol Catal A Chem 355:1–38

    Article  CAS  Google Scholar 

  2. Bell AT (2003) Science 299:1688–1691

    Article  CAS  Google Scholar 

  3. Bezemer GL, Bitter JH, Kuipers HPCE, Oosterbeek H, Holewijn JE, Xu X, Kapteijn F, van Dillen AJ, de Jong KP (2006) J Am Chem Soc 128:3956–3964

    Article  CAS  Google Scholar 

  4. Bezemer GL, Remans TJ, van Bavel AP, Dugulan AI (2010) J Am Chem Soc 132:8540–8541

    Article  CAS  Google Scholar 

  5. Murzin DY (2010) J Mol Catal A Chem 315:226–230

    Article  CAS  Google Scholar 

  6. Murzin DY, Simakova IL (2010) Kinet Catal 51:828–831

    Article  CAS  Google Scholar 

  7. Murzin D (2009) React Kinet Catal Lett 97:165–171

    Article  CAS  Google Scholar 

  8. Liu X-W, Huo C-F, Li Y-W, Wang J, Jiao H (2012) Surf Sci 606:733–739

    Article  CAS  Google Scholar 

  9. Pour AN, Housaindokht MR, Tayyari SF, Zarkesh J (2010) J Nat Gas Chem 19:107–116

    Article  CAS  Google Scholar 

  10. Pour AN, Housaindokht MR, Shahri SMK, Babakhani EG, Irani M (2011) J Ind Eng Chem 17:596–602

    Article  CAS  Google Scholar 

  11. Murzin DY (2010) J Catal 276:85–91

    Article  CAS  Google Scholar 

  12. Zhou X, Xu W, Liu G, Panda D, Chen P (2009) J Am Chem Soc 132:138–146

    Article  Google Scholar 

  13. Dalai AK, Davis BH (2008) Appl Catal A 348:1–15

    Article  CAS  Google Scholar 

  14. Dry ME (2002) Catal Today 71:227–241

    Article  CAS  Google Scholar 

  15. den Breejen JP, Radstake PB, Bezemer GL, Bitter JH, Frøseth V, Holmen A, Jong KPd (2009) J Am Chem Soc 131:7197–7203

    Article  Google Scholar 

  16. Dry ME (2004) In: André S, Mark D (eds) Studies in surface science and catalysis. Elsevier, Amsterdam, pp 533–600

    Google Scholar 

  17. Anderson RB (1984) The Fischer–Tropsch synthesis. Academic Press, Orlando, FL

    Google Scholar 

  18. Park J-Y, Lee Y-J, Karandikar PR, Jun K-W, Ha K-S, Park H-G (2012) Appl Catal A 411–412:15–23

    Article  Google Scholar 

  19. Chernavskii PA, Pankina GV, Lermontov AS, Lunin VV (2003) Kinet Catal 44:657–661

    Article  CAS  Google Scholar 

  20. Jacobs G, Das TK, Zhang Y, Li J, Racoillet G, Davis BH (2002) Appl Catal A 233:263–281

    Article  CAS  Google Scholar 

  21. Borg Ø, Eri S, Blekkan EA, Storsæter S, Wigum H, Rytter E, Holmen A (2007) J Catal 248:89–100

    Article  CAS  Google Scholar 

  22. Iglesia E (1997) Appl Catal A 161:59–78

    Article  CAS  Google Scholar 

  23. Borg Ø, Dietzel PDC, Spjelkavik AI, Tveten EZ, Walmsley JC, Diplas S, Eri S, Holmen A, Rytter E (2008) J Catal 259:161–164

    Article  CAS  Google Scholar 

  24. Storsæter S, Borg Ø, Blekkan EA, Holmen A (2005) J Catal 231:405–419

    Article  Google Scholar 

  25. Rohr F, Lindvåg OA, Holmen A, Blekkan EA (2000) Catal Today 58:247–254

    Article  CAS  Google Scholar 

  26. Lögdberg S, Boutonnet M, Walmsley JC, Järås S, Holmen A, Blekkan EA (2011) Appl Catal A 393:109–121

    Article  Google Scholar 

  27. Tavasoli A, Sadagiani K, Khorashe F, Seifkordi AA, Rohani AA, Nakhaeipour A (2008) Fuel Process Technol 89:491–498

    Article  CAS  Google Scholar 

  28. Abbaslou RMM, Soltan J, Dalai AK (2010) Appl Catal A 379:129–134

    Article  CAS  Google Scholar 

  29. Trépanier M, Dalai AK, Abatzoglou N (2010) Appl Catal A 374:79–86

    Article  Google Scholar 

  30. Chen W, Fan Z, Pan X, Bao X (2008) J Am Chem Soc 130:9414–9419

    Article  CAS  Google Scholar 

  31. Sarkar A, Seth D, Dozier A, Neathery J, Hamdeh H, Davis B (2007) Catal Lett 117:1–17

    Article  CAS  Google Scholar 

  32. Ojeda M, Rojas S, Boutonnet M, Pérez-Alonso FJ, Javier García-García F, Fierro JLG (2004) Appl Catal A Gen 274:33–41

    Article  CAS  Google Scholar 

  33. Housaindokht MR, Nakhaei Pour A (2012) Solid State Sci 14:622–625

    Article  CAS  Google Scholar 

  34. Housaindokht MR, Pour AN (2011) J Nat Gas Chem 20:687–692

    Article  CAS  Google Scholar 

  35. Herranz T, Rojas S, Pérez-Alonso FJ, Ojeda M, Terreros P, Fierro JLG (2006) Appl Catal A 311:66–75

    Article  CAS  Google Scholar 

  36. Wang C–C, Chen D-H, Huang T-C (2001) Colloids Surf A 189:145–154

    Article  CAS  Google Scholar 

  37. Xiong J, Borg Ø, Blekkan EA, Holmen A (2008) Catal Commun 9:2327–2330

    Article  CAS  Google Scholar 

  38. Karimi A, Pour AN, Torabi F, Hatami B, Tavasoli A, Alaei MR, Irani M (2010) J Nat Gas Chem 19:503–508

    Article  CAS  Google Scholar 

  39. Barbier A, Tuel A, Arcon I, Kodre A, Martin GA (2001) J Catal 200:106–116

    Article  CAS  Google Scholar 

  40. Hayashi H, Chen LZ, Tago T, Kishida M, Wakabayashi K (2002) Appl Catal A 231:81–89

    Article  CAS  Google Scholar 

  41. Van Der Laan GP, Beenackers AACM (1999) Catal Rev. 41:255–318

    Article  Google Scholar 

  42. Ojeda M, Nabar R, Nilekar AU, Ishikawa A, Mavrikakis M, Iglesia E (2010) J Catal 272:287–297

    Article  CAS  Google Scholar 

  43. Patzlaff J, Liu Y, Graffmann C, Gaube J (1999) Appl Catal A 186:109–119

    Article  CAS  Google Scholar 

  44. Borg Ø, Hammer N, Eri S, Lindvåg OA, Myrstad R, Blekkan EA, Rønning M, Rytter E, Holmen A (2009) Catal Today 142:70–77

    Article  CAS  Google Scholar 

  45. Radstake PB, Breejen JPd, Bezemer GL, Bitter JH, Jong KPd, Frøseth V, Holmen A (2007) In: Fábio Bellot Noronha MS, Eduardo Falabella S-A (eds) Studies in surface science and catalysis. Elsevier, Amsterdam, pp 85–90

    Google Scholar 

  46. Madon RJ, Iglesia E (1993) J Catal 139:576–590

    Article  CAS  Google Scholar 

  47. Iglesia E (1997) In: de Pontes RLECPNJHSM, Scurrell MS (eds) Studies in surface science and catalysis. Elsevier, Amsterdam, pp 153–162

    Google Scholar 

Download references

Acknowledgments

Financial support of the Ferdowsi University of Mashhad, Iran (2/26310-11/2/92) is gratefully acknowledged. We are also indebted to Dr. Ahmad Tavassoli, Tehran University, for assistance in the preparation and interpretation of TEM images and useful comment about the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Nakhaei Pour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakhaei Pour, A., Housaindokht, M. Fischer–Tropsch Synthesis Over CNT Supported Cobalt Catalysts: Role of Metal Nanoparticle Size on Catalyst Activity and Products Selectivity. Catal Lett 143, 1328–1338 (2013). https://doi.org/10.1007/s10562-013-1070-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-013-1070-y

Keywords

Navigation