Skip to main content
Log in

Dehydrogenation of Cyclohexanol on Fe, Ti-MCM-41 Mesoporous Materials

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Iron and titanium modified MCM-41 materials, prepared by direct synthesis were investigated using X-ray diffraction (XRD), nitrogen physisorption, UV–Vis diffuse reflectance, Mössbauer, FT-IR and EPR spectroscopies. Materials with high surface area and well-ordered pore structure were obtained. All modified mesoporous silicas possess high activity in cyclohexanol conversion. FeTiMCM-41 (Si/Ti = 10, Si + Ti/Fe = 15) catalyst presented the highest activity and selectivity to cyclohexanone.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1

Similar content being viewed by others

References

  1. Corma A (1997) Chem Rev 97:2373

    Article  CAS  Google Scholar 

  2. Wang Y, Zhang Q, Shishido T, Takehira K (2002) J Catal 209:186

    Article  CAS  Google Scholar 

  3. Wu Ch, Kong Y, Gao F, Wu Y, Lu Y, Wang J, Dong L (2008) Microporous Mesoporous Mater 113:163

    Article  CAS  Google Scholar 

  4. Garvalho WA, Varaldo PB, Wallau M, Schuchardt U (1997) Zeolites 18:408

    Article  Google Scholar 

  5. Kawabata T, Ohishi Y, Itsuki S, Fujisaki N, Shishido T, Takaki K, Zhang Q, Wang Y, Takehira K (2005) J Mol Catal A 236:99

    Article  CAS  Google Scholar 

  6. Hamdy MS, Mul G, Jansen JC, Ebaid A, Shan Z, Overweg AR, Maschmeyer Th (2005) Catal Today 100:255

    Article  CAS  Google Scholar 

  7. Orlov A, Zhal Q-Z, Klinowski J (2006) J Mater Sci 41:2187

    Article  CAS  Google Scholar 

  8. Araujo RS, Azevedo DCS, Rodrıguez-Castellon E, Jimenez-Lopez A, Cavalcante CL Jr (2008) J Mol Catal A 281:154

    Article  CAS  Google Scholar 

  9. Taguchi A, Schüth F (2005) Microporous Mesoporous Mater 77:1

    Article  CAS  Google Scholar 

  10. Rodriguis ACC (2007) Catal Commun 8:1227

    Article  Google Scholar 

  11. Sobczak I, Ziolek M, Renn M, Decyk P, Nowak I, Daturi M, Lavalley J-C (2004) Microporous Mesoporous Mater 74:23

    Article  CAS  Google Scholar 

  12. Szegedi A, Hegedűs M, Margitfalvi JL, Kiricsi I (2005) Chem Commun 11:1441

    Article  Google Scholar 

  13. Kataoka T, Dumesic JA (1988) J Catal 112:66

    Article  CAS  Google Scholar 

  14. Kang M, Lee M-H (2005) Appl Catal A 284:215

    Article  CAS  Google Scholar 

  15. Zhou M, Yu J, Chang B (2006) J Hazard Mater B 137:1838

    Article  CAS  Google Scholar 

  16. Lihitkar NB, Abyaneh MK, Samuel V, Pasricha R, Gosavi SW, Kulkarni SK (2007) J Colloid Interface Sci 314:310

    Article  CAS  Google Scholar 

  17. Galacho C, Carrott MMLR, Carrot PJM (2007) Microporous Mesoporous Mater 100:312

    Article  CAS  Google Scholar 

  18. Ji D, Zhu W, Wang Zh, Wang G (2007) Catal Commun 8:1891

    Article  CAS  Google Scholar 

  19. Reddy BM, Ratnam KJ, Saikia P (2006) J Mol Catal A 252:238

    Article  CAS  Google Scholar 

  20. Elangovan SP, Murugesan V (1997) J Mol Catal A 118:301

    Article  CAS  Google Scholar 

  21. Fridman VZ, Davydov AA (2000) J Catal 195:20

    Article  CAS  Google Scholar 

  22. Fridman VZ, Davydov AA, Titievsky K (2004) J Catal 222:545

    Article  CAS  Google Scholar 

  23. Park C, Keane MA (2001) J Mol Catal A 166:303

    Article  CAS  Google Scholar 

  24. Yang Zh, Li J, Yang X, Xie X, Wu Y (2005) J Mol Catal A 241:15

    Article  CAS  Google Scholar 

  25. Mishra BG, Rao GR (2006) J Mol Catal A 243:204

    Article  CAS  Google Scholar 

  26. Reddy GK, Rao PK (1997) Catal Lett 45:93

    Article  CAS  Google Scholar 

  27. Nagaraja BM, Kumar VS, Shashikala V, Padmasri AH, Reddy SS, Raju BD, Rao KSR (2004) J Mol Catal A 223:339

    Article  CAS  Google Scholar 

  28. Carlos DV, Perez CA, Salim VMM, Schmal M (1999) Appl Catal A 176:205

    Article  Google Scholar 

  29. Mendes FMT, Schmal M (1997) Appl Catal A 163:153

    Article  CAS  Google Scholar 

  30. Bautista FM, Campelo JM, Garcia A, Luna D, Martinas JM, Quiros RA, Romero AA (2003) Appl Catal A 243:93

    Article  CAS  Google Scholar 

  31. Reddy GK, Rao KSR, Rao PK (1999) Catal Lett 59:157

    Article  CAS  Google Scholar 

  32. Chen W-Sh, Lee M-D, Lee J-F (1992) Appl Catal A 83:201

    Article  CAS  Google Scholar 

  33. Dobrovolszky M, Tétényi P, Paál Z (1982) J Catal 74:31

    Article  CAS  Google Scholar 

  34. Popova M, Szegedi A, Cherkezova-Zheleva Z, Mitov I, Kostova N, Tsoncheva T (2009) J Hazard Mater 168:226

    Article  CAS  Google Scholar 

  35. Popova M, Szegedi A, Kostova N, Tsoncheva T (2008) Catal Commun 10:304

    Article  CAS  Google Scholar 

  36. Burns RG (1994) Hyperfine Interact 91:739

    Article  CAS  Google Scholar 

  37. Yordanov ND, Lubenova S (2000) Anal Chim Acta 403:305

    Article  CAS  Google Scholar 

  38. Ahn W-S, Kim N-K, Jeong S-Y (2001) Catal Today 68:83

    Article  CAS  Google Scholar 

  39. Chmielarz L, Kustrowski P, Drozdek M, Dziembaj R, Cool P, Vansant EF (2006) Catal Today 114:319

    Article  CAS  Google Scholar 

  40. Kim DH, Woo SI, Moon SH, Kim HD, Kim BY, Cho JH, Joh YG, Kim EC (2005) Solid State Commun 136:554

    Article  CAS  Google Scholar 

  41. Dzwigaj S, Stievano L, Wagner FE, Che M (2007) J Phys Chem Solids 68:1885

    Article  CAS  Google Scholar 

  42. Lazar K, Fejes P, Pal-Borbely G, Beyer HK (2002) Hyperfine Interact 141/142:387

    Article  CAS  Google Scholar 

  43. Szegedi A, Pál-Borbély G, Lázár K (2001) React Kinet Catal Lett 74:277

    Article  CAS  Google Scholar 

  44. Vinu A, Nandhini KU, Murugesan V, Bohlmann W, Umamaheswari V, Poppl A, Hartmann M (2004) Appl Catal A 265:1

    Article  CAS  Google Scholar 

  45. Bourlinos AB, Karakassides MA, Petradis D (2000) J Phys Chem B 104:4375

    Article  CAS  Google Scholar 

  46. Goldfarb D, Strohmaier KG, Vaughan DEW, Thomann H, Poluektov OG, Schmidt J (1996) J Am Chem Soc 118:4665

    Article  CAS  Google Scholar 

  47. Xin H, Liu J, Fan F, Feng Zh, Jia G, Yang Q, Li C (2008) Microporous Mesoporous Mater 113:231

    Article  CAS  Google Scholar 

  48. Szegedi A, Kónya Y, Méhn D, Solymár E, Pal-Borbély G, Horváth Y, Biró L, Kiricsi I (2004) Appl Catal A 272:257

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support by the project DO02-295_2008 and the Bulgarian–Hungarian Inter-academic Exchange Agreement are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Popova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popova, M., Szegedi, Á., Lázár, K. et al. Dehydrogenation of Cyclohexanol on Fe, Ti-MCM-41 Mesoporous Materials. Catal Lett 141, 1288–1296 (2011). https://doi.org/10.1007/s10562-011-0652-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-011-0652-9

Keywords

Navigation