Skip to main content
Log in

Water–Gas Shift Reaction over CuO/CeO2 Catalysts: Effect of the Thermal Stability and Oxygen Vacancies of CeO2 Supports Previously Prepared by Different Methods

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A series of CuO/CeO2 catalysts were prepared through a two-step process: (1) CeO2 supports were firstly prepared by precipitation (P), hydrothermal (HT) and sol-gel (SG) methods, respectively; and (2) CuO was deposited on the above CeO2 supports by deposition-precipitation method. The as-synthesized CeO2 supports and CuO/CeO2 catalysts were characterized by N2-physisorption, XRD, XPS, Raman, and H2-TPR. The CuO/CeO2 catalysts were examined with respect to their catalytic activity for the water–gas shift reaction, and their catalytic activities are ranked as: CuO/CeO2-P > CuO/CeO2-HT > CuO/CeO2-SG. The results suggest that the CeO2 prepared by precipitation (i.e., CeO2-P-300) has the best thermal stability and the most amounts of surface oxygen vacancies, which make the corresponding CuO/CeO2-P catalyst present the largest pore volume, the smallest crystal size of CuO, the highest microstrain (i.e., the highest surface energy) and the most amounts of active sites (i.e., the moderate copper oxide (crystalline) interacted with surface oxygen vacancies of ceria). Therefore, the catalytic activity of CuO/CeO2 catalysts, in nature, depends on the thermal stability and the number of surface oxygen vacancies of the CeO2 supports previously prepared by different methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7

Similar content being viewed by others

References

  1. Trimm DL, Önsan ZI (2001) Catal Rev 43:31

    Article  CAS  Google Scholar 

  2. Swartz SL, Seabaugh MM, Holt CT, Dawson WJ (2001) Fuel Cells Bull 4:7

    Article  Google Scholar 

  3. Powell BR, Bloink RL, Eickel CC (1988) J Am Ceram Soc 71:104

    Article  Google Scholar 

  4. Kaspar J, Fornasiero P, Graziani M (1999) Catal Today 50:285

    Article  CAS  Google Scholar 

  5. Si R, Zhang YW, Li SJ, Lin BX, Yan CH (2004) J Phys Chem B 108:12481

    Article  CAS  Google Scholar 

  6. Duarte de Farias AM, Bargiela P, Rocha MGC, Fraga MA (2008) J Catal 260:93

    Article  CAS  Google Scholar 

  7. Duarte de Farias AM, Barandas APMG, Perez RF, Fraga MA (2007) J Power Sources 165:854

    Article  CAS  Google Scholar 

  8. Bunluesin T, Gorte RJ, Graham GW (1998) Appl Catal B 15:107

    Article  CAS  Google Scholar 

  9. Fu Q, Saltsburg H, Flytzani-Stephanopoulos M (2003) Science 301:935

    Article  CAS  Google Scholar 

  10. Sandoval A, Gómez-Cortés A, Zanella R, Díaz G, Saniger JM (2007) J Mol Catal A 278:200

    Article  CAS  Google Scholar 

  11. Karpenko A, Leppelt R, Plzak V, Behm RJ (2007) J Catal 252:231

    Article  CAS  Google Scholar 

  12. Zhang Q, Zhan YY, Lin XY, Zheng Q (2007) Catal Lett 115:143

    Article  CAS  Google Scholar 

  13. Li Y, Fu Q, Flytzani-Stephanopoulos M (2000) Appl Catal B 27:179

    Article  Google Scholar 

  14. Djinović P, Levec J, Pintar A (2008) Appl Catal A 347:23

    Article  Google Scholar 

  15. Tabakova T, Idakiev V, Papavasiliou J, Avgouropoulos G, Ioannides T (2007) Catal Commun 8:101

    Article  CAS  Google Scholar 

  16. Qi X, Flytzani-Stephanopoulos M (2004) Ind Eng Chem Res 43:3055

    Article  CAS  Google Scholar 

  17. Li L, Zhan YY, Zheng Q, Zheng YH, Lin XY, Li DL, Zhu JJ (2007) Catal Lett 118:91

    Article  CAS  Google Scholar 

  18. She YS, Li L, Zhan YY, Lin XY, Zheng Q, Wei KM (2008) J Rare Earths (accepted for publication)

  19. Shen WJ, Ichihashi Y, Matsumura Y (2002) Catal Lett 83:33

    Article  CAS  Google Scholar 

  20. Shiau C, Ma MW, Chuang CS (2006) Appl Catal A 301:89

    Article  CAS  Google Scholar 

  21. Park JW, Jeong JH, Yoon WL, Jung H, Lee HT, Lee DK, Park YK, Rhee YW (2004) Appl Catal A 274:25

    Article  CAS  Google Scholar 

  22. Bera P, Priolkar KR, Sarode PR, Hegde MS, Emura S, Kumashiro R, Lalla NP (2002) Chem Mater 14:3591

    Article  CAS  Google Scholar 

  23. Wang X, Rodriguez JA, Hanson JC, Gamarra D, Arias AM, Garcia MF (2006) J Phys Chem B 110:428

    Article  CAS  Google Scholar 

  24. Laberty-Robert C, Long JW, Lucas EM, Pettigrew KA, Stroud RM, Doescher MS, Rolison DR (2006) Chem Mater 18:50

    Article  CAS  Google Scholar 

  25. Mai HX, Sun LD, Zhang YW, Si R, Feng W, Zhang HP, Liu HC, Yan CH (2005) J PhysChem B 109:24380

    CAS  Google Scholar 

  26. Zhou KB, Yang ZQ, Yang S (2007) Chem Mater 19:1215

    Article  CAS  Google Scholar 

  27. Chang HY, Chen HI (2005) J Cryst Growth 283:457

    Article  CAS  Google Scholar 

  28. Scholes FH, Hughes AE, Hardin SG, Lynch P, Miller PR (2007) Chem Mater 19:2321

    Article  CAS  Google Scholar 

  29. Gu FB, Wang ZH, Han DM, Shi C, Guo GS (2007) Mater Sci Eng B 139:62

    Article  CAS  Google Scholar 

  30. Zhang DS, Fu HX, Shi LY, Pan CS, Li Q, Chu YL, Yu WJ (2007) Inorg Chem 46:2446

    Article  CAS  Google Scholar 

  31. Barreca D, Gasparotto A, Maccato C, Maragno C, Tondello E (2006) Langmuir 22:8639

    Article  CAS  Google Scholar 

  32. Bondioli F, Bonamartini Corradi A, Leonelli C, Manfredini T (1999) Mater Res Bull 34:2159

    Article  CAS  Google Scholar 

  33. Yang HM, Huang CH, Tang AD, Zhang XC, Yang WG (2005) Mater Res Bull 40:1690

    Article  CAS  Google Scholar 

  34. Zhou F, Zhao XM, Xu H, Yuan CG (2007) J Phys Chem C 111:1651

    Article  CAS  Google Scholar 

  35. Hua JM, Wei KM, Zheng Q, Lin XY (2004) Appl Catal A 259:121

    Article  CAS  Google Scholar 

  36. Gamarra D, Munuera G, Hungria AB, Fernández-García M, Conesa JC, Midgley PA, Wang XQ, Hanson JC, Rodríguez JA, Martínez-Arias A (2007) J Phys Chem C 111:11026

    Article  CAS  Google Scholar 

  37. Lin XM, Li LP, Li GS, Su WH (2001) Mater Chem Phys 69:236

    Article  CAS  Google Scholar 

  38. Weber WH, Hass KC, McBride JR (1993) Phys Rev B 48:178

    Article  CAS  Google Scholar 

  39. Swanson M, Pushkarev VV, Kovalchuk VI, d’Itri JL (2007) Catal Lett 116:41

    Article  CAS  Google Scholar 

  40. McBride JR, Hass KC, Poindexter BD, Weber WH (1994) J Appl Phys 76:2435

    Article  CAS  Google Scholar 

  41. Radović M, Dohčević-Mitrović Z, Šćepanović M, Grujić-Brojčin M, Matović B, Bošković S, Popović ZV (2007) Science Sintering 39:281

    Article  Google Scholar 

  42. Spanier JE, Robinson RD, Zhang F, Chan SW, Herman IP (2001) Phys Rev B 64:245407

    Article  Google Scholar 

  43. Liu ZG, Zhou RX, Zheng XM (2008) Int J Hydrogen Energ 33:791

    Article  CAS  Google Scholar 

  44. Strohmeier BR, Leyden DE, Scott Field R, Hercules DM (1985) J Catal 94:514

    Article  CAS  Google Scholar 

  45. Ketchik SV, Plyasova LM, Seredkin AE, Kostrov VV, Morozov LN (1980) React Kinet Catal Lett 14:429

    Article  CAS  Google Scholar 

  46. Wang X, Rodriguez JA, Hanson JC, Gamarra D, Martínez-Arias A, Fernández-García M (2005) J Phys Chem B 109:19595

    Article  CAS  Google Scholar 

  47. Si R, Flytzani-Stephanopoulos M (2008) Angew Chem Int Ed 47:2884

    Article  CAS  Google Scholar 

  48. Jiang XY, Lu GL, Zhou RX, Mao JX, Chen Y, Zheng XM (2001) Appl Surface Sci 173:208

    Article  Google Scholar 

  49. Kasatkin I, Kurr P, Kniep B, Trunschke A, SchlUgl R (2007) Angew Chem Int Ed 46:7324

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the Department of Science of the People’s Republic of China (20771025), the Department of Science of Fujian Province (2007J0221) and the Department of Science & Technology of Fujian Province (2005H201-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Zhan, Y., Zheng, Q. et al. Water–Gas Shift Reaction over CuO/CeO2 Catalysts: Effect of the Thermal Stability and Oxygen Vacancies of CeO2 Supports Previously Prepared by Different Methods. Catal Lett 130, 532–540 (2009). https://doi.org/10.1007/s10562-009-9904-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-009-9904-3

Keywords

Navigation