Skip to main content
Log in

Effects of Noble Metal Promoters on In Situ Reduced Low Loading Ni Catalysts for Methane Activation

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The commercial potential for a given catalytic process may be influenced by requirements on metal loading, in particular where noble metals are used. In an effort to substantially decrease the amount of catalyst material used for methane activation and catalytic partial oxidation (CPO), the effect of 0.005 wt% noble metal (Rh, Ru, Pd or Pt) on 0.5 wt% Ni/γ-Al2O 3 catalysts have been studied at temperatures below 1,173 K and 1 atm. The successful catalysts were activated directly by in situ reduction, without a calcination step, to promote formation of a highly dispersed (supported) metal phase from nitrate precursors. The obtained metal particles were not observable by XRD (size <  2–3 nm). This activation procedure had a decisive effect on catalyst activity, as compared to a catalyst which was calcined ex situ before in situ reduction. Adding a noble metal caused a significant drop in the ignition temperature during temperature programmed catalytic partial oxidation (TPCPO). The ignition temperature for partial oxidation coincides well with the temperature for methane dissociation, and is likely correlated to the reducibility of the noble metal oxide. Methane partial oxidation over 0.5 wt% Ni catalysts, both with and without promoter, yielded high selectivity to synthesis gas (>93%) and stable performance for continued operation, but synthesis gas production at temperatures below 1,073 K required a promoter when the catalyst was ignited by TPCPO. Ignition of the CPO reactions by introducing the feed at a high furnace temperature (1,073 K) also enabled formation of synthesis gas, but the reaction was then less stable than obtained with the TPCPO procedure. A dual bed concept attempted to beneficially use the activation and combustion properties of the noble metal followed by the reforming properties of Ni. However, it was concluded that co-impregnated catalysts yielded as high, or even higher conversion of methane and selectivity to synthesis gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Liander H (1929) Trans Faraday Soc 25:462

    Article  CAS  Google Scholar 

  2. Peña MA, Gómez JP, Fierro JLG (1996) Appl Catal A 144:7

    Article  Google Scholar 

  3. Rostrup-Nielsen JR, Sehested J (2002) Adv Catal 47:65

    Article  CAS  Google Scholar 

  4. Prettre M, Eichner C, Perrin M (1946) Trans Faraday Soc 42:335b

    Article  Google Scholar 

  5. Vernon PDF, Green MLH, Cheetham AK, Ashcroft AT (1990) Catal Lett 6:181

    Article  CAS  Google Scholar 

  6. Ashcroft AT, Cheetham AK, Foord JS, Green MLH, Grey CP, Murrell AJ, Vernon PDF (1990) Nature 344:319

    Article  CAS  Google Scholar 

  7. Ashcroft AT, Cheetham AK, Green MLH, Vernon PDF (1991) Partial oxidation of methane to synthesis gas using carbon dioxide. Nature 352:225

    Article  CAS  Google Scholar 

  8. Tsang SC, Claridge JB, Green MLH (1995) Catal Today 23:3

    Article  CAS  Google Scholar 

  9. York APE, Xiao T, Green MLH (2003) Top Catal 22:345

    Article  CAS  Google Scholar 

  10. Reyes SC, Sinfelt JH, Feeley JS (2003) Ind Eng Chem Res 42:1588

    Article  CAS  Google Scholar 

  11. Enger BC, Lødeng R, Holmen A (2008) Appl Catal A 346:1

    Article  CAS  Google Scholar 

  12. Ferreira-Aparicio P, Rodríguez-Ramos I, Guerrero-Ruiz A (1997) Appl Catal A 148:343

    Article  CAS  Google Scholar 

  13. Choudhary VR, Rajput AM, Mamman AS (1998) J Catal 178:576

    Article  CAS  Google Scholar 

  14. Jóźwiak WK, Nowosielska M, Rynkowski J (2005) Appl Catal A 280:233

    Article  Google Scholar 

  15. Iglesia E (1997) Appl Catal A 161:59–78

    Article  CAS  Google Scholar 

  16. Gadalla AM, Bower B (1988) Chem Eng Sci 43(11):3049

    Article  CAS  Google Scholar 

  17. Zhang Y, Xiong G, Sheng S, Yang W (2000) Catal Today 63:517

    Article  CAS  Google Scholar 

  18. Villacampa JI, Royo C, Romeo E, Montoya JA, Del Angel P, Monzón A (2003) Appl Catal A 252:363

    Article  CAS  Google Scholar 

  19. Sahli N, Petit C, Roger AC, Kiennemann A, Libs S, Bettahar MM (2006) Catal Today 113: 187

    Article  CAS  Google Scholar 

  20. Yan QG, Weng WZ, Wan HL, Toghiani H, Toghiani RK, Pittman Jr CU (2003) Appl Catal A 239:43

    Article  CAS  Google Scholar 

  21. Wei J, Iglesia E (2004) J Catal 224:370

    Article  CAS  Google Scholar 

  22. Bizzi M, Basini L, Saracco G, Specchia V (2002) Chem Eng J 90:97

    Article  CAS  Google Scholar 

  23. Enger BC, Lødeng R, Holmen A (2008) Methane activation, H2 and CO formation on low-loading Ni catalysts, poster, 14th international congress on catalysis, Seoul, Korea

  24. Choudhary TV, Goodman DW (2000) J Mol Catal A: Chem 163:9

    Article  CAS  Google Scholar 

  25. Choudhary VR, Prabhakar B, Rajput AM (1995) J Catal 157:752

    Article  CAS  Google Scholar 

  26. Nakagawa K, Ikenaga N, Teng Y, Kobayashi T, Suzuki T (1999) Appl Catal A 180:183

    Article  CAS  Google Scholar 

  27. Basile F, Fornasari G, Trifirò F, Vaccari A (2001) Catal Today 64:21

    Article  CAS  Google Scholar 

  28. Basile F, Fornasari G, Trifirò F, Vaccari A (2002) Catal Today 77:215

    Article  CAS  Google Scholar 

  29. Li B, Kado S, Mukainakano Y, Nurunnabi M, Miyao T, Naito S, Kunimori K, Tomishige K (2006) Appl Catal A 304:62

    Article  CAS  Google Scholar 

  30. Ji Y, Li W, Xu H, Chen Y (2001) Catal Lett 71:45

    Article  CAS  Google Scholar 

  31. Dias JAC, Assaf JM (2004) J Power Sources 130:106

    Article  CAS  Google Scholar 

  32. Enger BC, Lødeng R, Holmen A (2009) J Catal 262:188

    Article  CAS  Google Scholar 

  33. Enger BC, Lødeng R, Holmen A (2009) Evaluation of reactor and catalyst performance in methane partial oxidation over modified nickel catalysts. Appl Catal A (Accepted)

  34. Aartun I, Gjervan T, Venvik H, Görke O, Pfeifer P, Fathi M, Holmen A, Schubert K (2004) Chem Eng J 101:93

    Article  CAS  Google Scholar 

  35. Silberova B, Venvik HJ, Holmen A (2005) Catal Today 99:69

    Article  CAS  Google Scholar 

  36. Pawelec B, Damyanova S, Arishtirova K, Fiero JLG, Petrov L (2007) Appl Catal A 323:188

    Article  CAS  Google Scholar 

  37. Hilmen AM, Schanke D, Holmen A (1996) Catal Lett 38:143

    Article  CAS  Google Scholar 

  38. Hickman DA, Schmidt LD (1993) Science 259:343

    Article  CAS  Google Scholar 

  39. Hickman DA, Schmidt LD (1993) AIChE J 39:1164

    Article  CAS  Google Scholar 

  40. Rodriguez JA (1996) Surf Sci Rep 24:223

    Article  CAS  Google Scholar 

  41. Veser G, Ziauddin M, Schmidt LD (1999) Catal Today 47:219

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial supports of the Research Council of Norway, and StatoilHydro ASA through the RENERGI program, and the Norwegian University of Science and Technology (NTNU) are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Holmen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Enger, B.C., Lødeng, R. & Holmen, A. Effects of Noble Metal Promoters on In Situ Reduced Low Loading Ni Catalysts for Methane Activation. Catal Lett 134, 13–23 (2010). https://doi.org/10.1007/s10562-009-0219-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-009-0219-1

Keywords

Navigation