Skip to main content
Log in

Effect of Pt Impregnation on a Precipitated Iron-based Fischer–Tropsch Synthesis Catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Effect of Pt impregnation on the textural properties, surface element distributions and catalytic behavior of a precipitated iron-based catalyst for Fischer–Tropsch synthesis (FTS) was investigated by N2 physical adsorption, temperature-programmed reduction (TPR), Mössbauer effect spectrometer (MES), X-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy (HRTEM). Low levels of Pt addition lead to an increase in BET surface area. The result of XPS indicates that Pt enriches on the catalyst surface after being calcined. HRTEM shows that Pt crystallites with diameter about 2 nm are well dispersed on the surface of the catalyst (100Fe/1Pt/4 K/16SiO2). The results of TPR and MES clearly indicate that Pt facilitates the reduction and carburization of Fe2O3 to some extend. The reaction tests in a slurry reactor give the result that the Pt impregnation remarkably increases the FTS activity, and suppresses the selectivities of the light hydrocarbons and the olefins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jothimurugesan K, Goodwin JG Jr, Gangwal SK, Spivey JJ (2000) Catal Today 58:335

    Article  CAS  Google Scholar 

  2. Riedel T, Schulz H, Schaub G, Jun K, Hwang J, Lee K (2003) Top Catal 26:41

    Article  CAS  Google Scholar 

  3. Maretto C, Krishna R (2001) Catal Today 66:241

    Article  CAS  Google Scholar 

  4. Dry ME (2002) Catal Today 71:227

    Article  CAS  Google Scholar 

  5. Jin Y, Datye AK (2000) J Catal 196:8

    Article  CAS  Google Scholar 

  6. Wu BS, Bai L, Xiang HW, Li YW, Zhang ZX, Zhong B (2004) Fuel 83:205

    Article  CAS  Google Scholar 

  7. Li S, Li A, Krishnamoorthy S, Iglesia E (2001) Catal Lett 77:197

    Article  CAS  Google Scholar 

  8. Luo MS, Davis BH (2003) Appl Catal A: Gen 246:171

    Article  CAS  Google Scholar 

  9. Zhang CH, Yang Y, Teng BT, Li TZ, Zheng HY, Xiang HW, Li YW (2006) J Catal 237:405

    Article  CAS  Google Scholar 

  10. Garten RL, Ollis DF (1974) J Catal 35:232

    Article  CAS  Google Scholar 

  11. Richter B, Baerns M (1985) Chem Zeitung 109:395

    CAS  Google Scholar 

  12. Luo MS, O’Brien R, Davis BH (2004) Catal Lett 98:17

    Article  CAS  Google Scholar 

  13. Knifton JF, Lin JJ (1982) US Patent 4,366,259

  14. Bruce LA, Hoang M, Hughes AE, Turney TW (1993) Appl Catal A: Gen 100:51

    Article  CAS  Google Scholar 

  15. Iglesia E, Soled SL, Baumgartner JE, Reyes SC (1995) J Catal 153:108

    Article  CAS  Google Scholar 

  16. Vada S, Hoff A, Adnanes E, Schanke D, Holmen A (1995) Top Catal 2:155

    Article  CAS  Google Scholar 

  17. Schanke D, Vada S, Blekkan EA, Hilmen AM, Hoff A, Holmen A (1995) J Catal 156:85

    Article  CAS  Google Scholar 

  18. Jacobs G, Das TK, Zhang Y, Li J, Racoillet G, Davis BH (2002) Appl Catal A: Gen 233:263

    Article  CAS  Google Scholar 

  19. Iglesia E, Soled SL, Fiato RA, Via GH (1993) J Catal 143:345

    Article  CAS  Google Scholar 

  20. Xu J, Bartholomew CH, Sudweeks J, Eggett DL (2003) Top Catal 26:55

    Article  CAS  Google Scholar 

  21. Yang Y, Xiang HW, Tian L, Wang H, Zhang CH, Tao ZC, Xu YY, Zhong B, Li YW (2005) Appl Catal A: Gen 284:105

    Article  CAS  Google Scholar 

  22. Wang Y, Wang S, Zhao Y, Zhu B, Kong F, Wang D, Wu S, Huang W, Zhang S (2007) Sens Actuators B 125:79

    Article  CAS  Google Scholar 

  23. Moreno B, Chinarro E, Fierro JLG, Jurado JR (2007) J Power Sources 169:98

    Article  CAS  Google Scholar 

  24. Leith IR, Howden MG (1988) Appl Catal 37:75

    Article  CAS  Google Scholar 

  25. Boudart M, Delbouille A, Dumesic JA, Khammouma S, Topsøe H (1975) J Catal 37:486

    Article  CAS  Google Scholar 

  26. Kock AJHM, Fortuin HM, Geus JW (1985) J Catal 96:261

    Article  CAS  Google Scholar 

  27. Clausen BS, Topsøe H, Morup S (1989) Appl Catal 48:327

    Article  CAS  Google Scholar 

  28. Guczi L, Kiricsi I (1999) Appl Catal A 186:375

    Article  CAS  Google Scholar 

  29. Guczi L, Beck A, Horváth A, Horváth D (2002) Top Catal 19:157

    Article  CAS  Google Scholar 

  30. Li TZ, Yang Y, Zhang CH, An X, Wan HJ, Tao ZC, Xiang HW, Li YW, Yi F, Xu BF (2007) Fuel 86:921

    Article  CAS  Google Scholar 

  31. Sudsakorn K, Goodwin JG, Adeyiga AA (2003) J Catal 213:204

    Article  CAS  Google Scholar 

  32. Motiope TR, Dlamini HT, Hearne GR, Conville NG (2002) Catal Today 71:335

    Article  Google Scholar 

  33. Li S, Meitzner GD, Iglesia E (2001) J Phys Chem B 105:5743

    Article  CAS  Google Scholar 

  34. Yang Y, Xiang HW, Xu YY, Bai L, Li YW (2004) Appl Catal A: Gen 266:181

    Article  CAS  Google Scholar 

  35. Huber GW, Bartholomew H (2001) Stud Surf Sci Catal 136:283

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We deeply appreciate the financial support from National Outstanding Young Scientists Foundation of China (20625620) and National Key Basic Research Program of China via 973 plan (2007CB216401). This work is also supported by Synfuels CHINA. Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoshan Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, W., Wu, B., Xu, J. et al. Effect of Pt Impregnation on a Precipitated Iron-based Fischer–Tropsch Synthesis Catalyst. Catal Lett 125, 116–122 (2008). https://doi.org/10.1007/s10562-008-9524-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-008-9524-3

Keywords

Navigation