Skip to main content
Log in

Preparation of Carbon Nanotubes (CNTs)-Cordierite Monoliths by Catalytic Chemical Vapor Deposition as Catalyst Supports for Ammonia Synthesis

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Tunable carbon nanotubles (CNTs)-coated monoliths as catalyst supports were prepared by catalytic chemical vapor deposition (CCVD) over deposited cobalt on cordierite. The influence of the preparation conditions such as the cobalt nitrate loading on the cordierite monoliths, the flow rate of reaction gases, reaction time and temperature on CNTs yield, thermal properties and structural features of the resulting materials were studied. The CNTs-cordierite was characterized by TEM/HREM, SEM, N2 physisorption and TGA. The SEM showed that a relatively homogeneous mesoporous layer of CNTs covered on the surface of the cordierite monoliths. Comparing with the bare cordierite, the BET surface area and pore volume of CNTs-cordierite increased significantly. CNTs have penetrated into the cordierite substrate and led to a remarkable mechanical stability of the CNTs-cordierite monoliths against ultrasound maltreatment. The CNTs content, BET surface area, pore volume and thermal properties of CNTs-cordierite monoliths all could be changed by the variation of the synthesis conditions. Barium promoted ruthenium catalysts supported on the as-synthesized materials showed much higher activity for ammonia synthesis than their counterparts deposited on bare cordierite monoliths. Furthermore, the catalytic activity linearly increased with the BET surface area of CNTs-cordierite monoliths. The CNTs-cordierite monoliths were proved to be promising candidates as catalyst supports and the performance of catalysts supported on as-prepared materials would be easily modified by changing the growth conditions of CNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Rodriguez-Reinoso F (1998) Carbon 36:159

    Article  CAS  Google Scholar 

  2. Auer E, Freund A, Pietsch J, Tacke T (1998) Appl Catal A: Gen 173:259

    Article  CAS  Google Scholar 

  3. Vergunst T, Linders MJG, Kapteijn F, Moulijn JA (2001) Catal Rev 43:291

    Article  CAS  Google Scholar 

  4. Zhao Y, Li CH, Yu ZX, Yao KF, Ji SF, Liang J (2007) Mater Chem Phys 103:225

    Article  CAS  Google Scholar 

  5. Li Y, Lai GH, Zhou RX (2007) Appl Surf Sci 253:4978

    Article  CAS  Google Scholar 

  6. Liu ZJ, Xu Z, Yuan ZY, Lu D, Chen W, Zhou W (2001) Catal Lett 72:203

    Article  CAS  Google Scholar 

  7. Bahome MC, Jewell LL, Hildebrandt D, Glasser D, Coville NJ (2005) Appl Catal A: Gen 287:60

    Article  CAS  Google Scholar 

  8. Chen HB, Lin JD, Cai Y, Wang XY, Yi J, Wang J, Wei G, Lin YZ, Liao DW (2001) Appl Surf Sci 180:328

    Article  CAS  Google Scholar 

  9. Xu QC, Lin JD, Li J, Fu XZ, Yang ZW, Guo WM, Liao DW (2006) J Mol Catal A: Chem 59:218

    Article  CAS  Google Scholar 

  10. Xu QC, Lin JD, Li J, Fu XZ, Liang Y, Liao DW (2007) Catal Commun 8:1881

    Article  CAS  Google Scholar 

  11. Yin SF, Xu BQ, Wang SJ, Ng CF, Au CT (2004) Catal Lett 3:96

    Google Scholar 

  12. García-Bordejé E, Kvande I, Chen D, Rønning M (2007) Carbon 45:1828

    Article  CAS  Google Scholar 

  13. Janowska I, Winé G, Ledoux MJ, Pham-Huu C (2007) J Mol Catal A: Chem 267:92

    Article  CAS  Google Scholar 

  14. Kapteijn F, Heiszwolf JJ, Nijhuis TA, Moulijn JA (1999) CATTECH 3:24

    CAS  Google Scholar 

  15. Jarrah N, van Ommen JG, Lefferts L (2003) Catal Today 79–80:29

    Article  CAS  Google Scholar 

  16. Jarrah N, van Ommen JG, Lefferts L (2004) J Mater Chem 14:1590

    Article  CAS  Google Scholar 

  17. García-Bordejé E, Kvande I, Chen D, Rønning M, (2006) Adv Mater 18:1589

    Article  CAS  Google Scholar 

  18. Wang JM, Wang R, Lin XJ, Xie F, Wei KM (2006) J Nat Gas Chem 15:211

    Article  CAS  Google Scholar 

  19. Vergunst T, Kapteijn F, Moulijn JA (2002) Carbon 40:1891

    Article  CAS  Google Scholar 

  20. Ebbesen TW, Ajayan PM, Hiura H, Tanigaki K (1994) Nature 367:519

    Article  Google Scholar 

  21. Ivanov V, Fonseca A, Nagy JB, Lucas A, Lambin P, Bernaerts D, Zhang XB (1995) Carbon 33:1727

    Article  CAS  Google Scholar 

  22. Hernadi K, Fonseca A, Nagy JB, Bernaerts D, Riga J, Lucas A (1996) Synthetic Met 77:31

    Article  CAS  Google Scholar 

  23. Liang CH, Wei ZB, Xin Q, Li C (2001) Appl Catal A: Gen 208:193

    Article  CAS  Google Scholar 

  24. Sinha AK, Hwang DW, Hwang LP (2000) Chem Phys Lett 332:455

    Article  CAS  Google Scholar 

  25. Mukhopadhyay K, Koshio A, Sugai T, Tanaka N, Shinohara H, Konya Z, Nagy JB (1999) Chem Phys Lett 303:117

    Article  CAS  Google Scholar 

  26. Zhu J, Yudasaka M, Iijima S (2003) Chem Phys Lett 380:496

    Article  CAS  Google Scholar 

  27. Baker RTK, Rodriguez NM (1994) Mater Res Soc Symp Proc 349:251

    CAS  Google Scholar 

  28. Zhu J, Yudasaka M, Iijima S (2003) Chem Phys Lett 380:496

    Article  CAS  Google Scholar 

  29. Wasel W, Kuwana K, Reilly PTA, Saito K (2007) Carbon 45:833

    Article  CAS  Google Scholar 

  30. Serp P, Corrias M, Kalck P (2003) Appl Catal A: Gen 253:337

    Article  CAS  Google Scholar 

  31. Iijima S (1991) Nature 354:56

    Article  CAS  Google Scholar 

  32. Hernadi K, Thién-Nga L, Forró L (2001) J Phys Chem B 105:12464

    Article  CAS  Google Scholar 

  33. Aika K, Hori H, Ozaki A (1972) J Catal 27:424

    Article  CAS  Google Scholar 

  34. Kusnetzova A, Popova I, Yates JT, Bronikowski MJ, Huffman CD, Liu J, Smalley RE, Hwu HH, Chen JG (2001) J Am Chem Soc 123:10699

    Article  CAS  Google Scholar 

  35. Kyotani T, Nakazaki S, Xu WH, Tomita A (2001) Carbon 39:771

    Article  Google Scholar 

  36. Pilecka WR, Miskiewicz E, Szmigiel D, Kowalczyk Z (2005) J Catal 231:11

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by the National Natural Science Foundation of China (20576021) and Science & Technology Priority Project of Fujian Province (2005H201–2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, B., Wang, R., Lin, B. et al. Preparation of Carbon Nanotubes (CNTs)-Cordierite Monoliths by Catalytic Chemical Vapor Deposition as Catalyst Supports for Ammonia Synthesis. Catal Lett 122, 287–294 (2008). https://doi.org/10.1007/s10562-007-9374-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-007-9374-4

Keywords

Navigation