Skip to main content
Log in

The Influence of Solvent on the Acidity and Activity of Supported Sulfonic Acid Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The acid strengths and catalytic activities of sulfonic acids supported on polystyrene resins and ordered mesoporous HMS and SBA-15 silicas are compared. Acid strengths are measured by acid–base titration calorimetry in terms of the molar enthalpies of neutralisation with either NaOH or n-butylamine in water, acetonitrile and cyclohexane. Catalytic activities (turnover numbers) are reported in model reactions in water, 1,2-dichlorobenzene and anisole, and compared with acid strengths. In water, sulfonated resins are both stronger acids and more active catalysts than sulfonated silicas. Catalytic activities in water correlate well with these measured acid strengths. In acetonitrile the order of acid strengths is reversed and the sulfonated silicas are the stronger acids. Catalytic measurements in 1,2-dichlorobenzene, a similar dipolar aprotic solvent, show the same reversed order of activities. In the non-polar solvent cyclohexane (where only macroporous sulfonated resins show measurable acidity) the sulfonated silicas are again the stronger acids but by a larger margin. Catalytic activities in anisole, which is also only very weakly solvating towards sulfonic acid groups, show a similar trend. The results illustrate the role of the solvent in controlling the acid strength of solid acid catalysts, and the importance of taking this into account when designing acid catalysts for liquid phase processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Chakrabarti and M. M. Sharma, React. Polym. 20 (1993) 1.

    Google Scholar 

  2. B. Corain, M. Zecca and K. Jerabek, J. Molec. Catal. A:Chem. 177 (2001) 3.

    Google Scholar 

  3. J. Tejero, F. Cunill, M. Iborra, J. F. Izquierdo and C. Fite, J. Mol. Catal. A:Chem. 182 (2002) 541.

    Google Scholar 

  4. W. M. Van Rhijn, D. E. DeVos, B. F. Sels, W. D. Bossaert and P. A. Jacos, J. Chem. Soc., Chem. Commun. 182 (1998) 317.

    Google Scholar 

  5. W. D. Bossaert, D. E. DeVos, W. M. Van Rhijn, J. Bullen, P. J. Grobet and P. A. Jacobs, J. Catal. 182 (1999) 156.

    Google Scholar 

  6. D. Margolese, J. A. Melero, S. C. Christiansen, B. F. Chmelka and G. D. Stucky, Chem. Mater. 12 (2000) 2448.

    Google Scholar 

  7. S. Koujout and D. R. Brown in: Catalysis in Application Application, eds. S. D. Jackson, J. S. J. Hargreaves and D. Lennon (Royal Society of Chemistry, London, 2003)pp. 178–185.

    Google Scholar 

  8. S. Koujout, B. M. Kiernan, D. R. Brown, H. G. M. Edwards, J. A. Dale and S. Plant, Catal. Lett. 85 (2003) 33.

    Google Scholar 

  9. M. Hart, G. Fuller, D. R. Brown, C. Park, M. A. Keane, J. A. Dale, C. M. Fougret and R. W. Cockman, Catal. Lett. 72 (2001) 135.

    Google Scholar 

  10. C. Buttersack, H Widdeske and J. Klein, React. Polym. 5 (1987) 181.

    Google Scholar 

  11. M. Hart, G. Fuller, D. R. Brown, J. A Dale and S. Plant, J. Mol. Catal. A:Chem. 182 –183 (2002) 439.

    Google Scholar 

  12. F. Ancilloti, M. M. Mauri and E. Pescaraollo, J. Catal. 46 (1977) 49.

    Google Scholar 

  13. K. Jerabek and K. Setinek, J. Mol. Catal. 39 (1987) 161.

    Google Scholar 

  14. J. H. Ahn, S. K. Ihn and K. S. Park, J. Catal. 113 (1988) 434.

    Google Scholar 

  15. P. T. Tanev and T. J. Pinnavaia, Science 267 (1995) 865.

    Google Scholar 

  16. D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka and G. D. Stucky, Science 279 (1998) 548.

    Google Scholar 

  17. E. M. Arnett, R. A. Haaksma, B. Chawla and M. H. Healy, J. Am. Chem. Soc. 108 (1986) 4888.

    Google Scholar 

  18. E. M. Arnett, T. Absan and K. Amarnath, J. Am. Chem. Soc. 113 (1991) 6858.

    Google Scholar 

  19. R. S. Drago and N. Kob, J. Phys. Chem. B 101 (1997) 3360.

    Google Scholar 

  20. C. Chronister and R. Drago, J. Am. Chem. Soc. 115 (1993) 4793.

    Google Scholar 

  21. C. E. Harland, Ion Exchange:Theory and Practice 2nd Ed, (Royal Society of Chemistry, London, 1994).

    Google Scholar 

  22. M. J. Climent, A. Corma, S. Iborra and M. C. Navarro, J. Catal. 161 (1996) 783.

    Google Scholar 

  23. Y. Tanaka, N. Sawamura and M. Iwamoto, Tet. Lett. 39 (1998) 9457.

    Google Scholar 

  24. J. Deutsch, V. Quashning, E. Kemnitz, A. Auroux, H. Ehwald and H. Lieske, Top. Catal. 13 (2000) 281.

    Google Scholar 

  25. R. Thornton and B. C. Gates, J. Catal. 34 (1974) 275.

    Google Scholar 

  26. M. D. Grieser, A. D. Wilks and D. J. Pietrzyk, Anal. Chem. 44 (1972) 671.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koujout, S., Brown, D. The Influence of Solvent on the Acidity and Activity of Supported Sulfonic Acid Catalysts. Catalysis Letters 98, 195–202 (2004). https://doi.org/10.1007/s10562-004-8680-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-004-8680-3

Navigation