Skip to main content

Advertisement

Log in

An overview of the production of tissue extracellular matrix and decellularization process

  • Full Length Review
  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

Thousands of patients need an organ transplant yearly, while only a tiny percentage have this chance to receive a tissue/organ transplant. Nowadays, decellularized animal tissue is one of the most widely used methods to produce engineered scaffolds for transplantation. Decellularization is defined as physically or chemically removing cellular components from tissues while retaining structural and functional extracellular matrix (ECM) components and creating an ECM-derived scaffold. Then, decellularized scaffolds could be reseeded with different cells to fabricate an autologous graft. Effective decellularization methods preserve ECM structure and bioactivity through the application of the agents and techniques used throughout the process. The most valuable agents for the decellularization process depend on biological properties, cellular density, and the thickness of the desired tissue. ECM-derived scaffolds from various mammalian tissues have been recently used in research and preclinical applications in tissue engineering. Many studies have shown that decellularized ECM-derived scaffolds could be obtained from tissues and organs such as the liver, cartilage, bone, kidney, lung, and skin. This review addresses the significance of ECM in organisms and various decellularization agents utilized to prepare the ECM. Also, we describe the current knowledge of the decellularization of different tissues and their applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Code availability

Not applicable.

References

  • Ahim A, Hazwani A, Shaban M (2019) Biomechanical and structural properties of aortic scaffolds decellularized by sonication decellularization system. J Cardiovasc Med Ther 2019(2):1–9

    Google Scholar 

  • Amemiya M et al (2020) Synovial fluid-derived mesenchymal cells have non-inferior chondrogenic potential and can be utilized for regenerative therapy as substitute for synovium-derived cells. Biochem Biophys Res Commun 523(2):465–472

    Article  CAS  PubMed  Google Scholar 

  • Amirazad H, Dadashpour M, Zarghami N (2022) Application of decellularized bone matrix as a bioscaffold in bone tissue engineering. J Biol Eng 16(1):1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashammakhi N, GhavamiNejad A, Tutar R, Fricker A, Roy I, Chatzistavrou X, Apu EH, Nguyen K-L, Ahsan T, Pountos I, Caterson EJ (2022) Highlights on advancing frontiers in tissue engineering. Tissue Eng Part B Rev 28(3):633–664

    Article  PubMed  PubMed Central  Google Scholar 

  • Badria AF, Koutsoukos PG, Mavrilas D (2020) Decellularized tissue-engineered heart valves calcification: what do animal and clinical studies tell us? J Mater Sci Mater Med 31(12):1–21

    Article  Google Scholar 

  • Badylak SF (2004) Xenogeneic extracellular matrix as a scaffold for tissue reconstruction. Transpl Immunol 12(3–4):367–377

    Article  CAS  PubMed  Google Scholar 

  • Badylak SF et al (1989) Small intestinal submucosa as a large diameter vascular graft in the dog. J Surg Res 47(1):74–80

    Article  CAS  PubMed  Google Scholar 

  • Batioglu-Karaaltin A et al (2019) Decellularization of trachea with combined techniques for tissue-engineered trachea transplantation. Clin Exp Otorhinolaryngol 12(1):86

    Article  CAS  PubMed  Google Scholar 

  • Benders KE et al (2019) Fabrication of decellularized cartilage-derived matrix scaffolds. JoVE (j vis Exp) 143:e58656

    Google Scholar 

  • Bonvillain RW et al (2012) A nonhuman primate model of lung regeneration: detergent-mediated decellularization and initial in vitro recellularization with mesenchymal stem cells. Tissue Eng Part A 18(23–24):2437–2452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borges MF, Maurmann N, Pranke P (2023) Easy-to-assembly system for decellularization and recellularization of liver grafts in a bioreactor. Micromachines 14(2):449

    Article  PubMed  PubMed Central  Google Scholar 

  • Boroumand S et al (2018) Heart valve tissue engineering: an overview of heart valve decellularization processes. Regen Med 13(1):41–54

    Article  CAS  PubMed  Google Scholar 

  • Borschel GH, Dennis RG, Kuzon WM Jr (2004) Contractile skeletal muscle tissue-engineered on an acellular scaffold. Plast Reconstr Surg 113(2):595–602

    Article  PubMed  Google Scholar 

  • Brafman DA (2013) Constructing stem cell microenvironments using bioengineering approaches. Physiol Genom 45(23):1123–1135

    Article  CAS  Google Scholar 

  • Brown BN et al (2011) Comparison of three methods for the derivation of a biologic scaffold composed of adipose tissue extracellular matrix. Tissue Eng Part C Methods 17(4):411–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buerba RA, Boden SA, Lesniak B (2021) Graft selection in contemporary anterior cruciate ligament reconstruction. JAAOS Global Res Rev 5(10)

  • Casino FG (2010) Dialysis dose quantification in critically ill patients. Giornale Italiano Di Nefrologia: Organo Ufficiale Della Societa Italiana Di Nefrologia 27(4):383–390

    PubMed  Google Scholar 

  • Chen G, Lv Y (2017) Decellularized bone matrix scaffold for bone regeneration. Decellularized scaffolds and organogenesis. Springer, pp 239–254

    Chapter  Google Scholar 

  • Chen J et al (2009) Scaffolds for tendon and ligament repair: review of the efficacy of commercial products. Expert Rev Med Devices 6(1):61–73

    Article  PubMed  Google Scholar 

  • Crapo PM, Gilbert TW, Badylak SF (2011) An overview of tissue and whole organ decellularization processes. Biomaterials 32(12):3233–3243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui H, Chai Y, Yu Y (2019) Progress in developing decellularized bioscaffolds for enhancing skin construction. J Biomed Mater Res Part A 107(8):1849–1859

    Article  CAS  Google Scholar 

  • Cun X, Hosta-Rigau L (2020) Topography: a biophysical approach to direct the fate of mesenchymal stem cells in tissue engineering applications. Nanomaterials 10(10):2070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dahl SL et al (2003) Decellularized native and engineered arterial scaffolds for transplantation. Cell Transpl 12(6):659–666

    Article  Google Scholar 

  • de Haan MJA et al (2021) Have we hit a wall with whole kidney decellularization and recellularization: a review. Curr Opin Biomed Eng 20:100335

    Article  Google Scholar 

  • de Pizzol Júnior JP, Sasso-Cerri E, Cerri PS (2018) Matrix metalloproteinase-1 and acid phosphatase in the degradation of the lamina propria of eruptive pathway of rat molars. Cells 7(11):206

    Article  PubMed  PubMed Central  Google Scholar 

  • DeBari MK et al (2021) Engineering a 3D vascularized adipose tissue construct using a decellularized lung matrix. Biomimetics 6(3):52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Destefani AC, Sirtoli GM, Nogueira BV (2017) Advances in the knowledge about kidney decellularization and repopulation. Front Bioeng Biotechnol 5:34

    Article  PubMed  PubMed Central  Google Scholar 

  • Dunne LW et al (2014) Human decellularized adipose tissue scaffold as a model for breast cancer cell growth and drug treatments. Biomaterials 35(18):4940–4949

    Article  CAS  PubMed  Google Scholar 

  • Dussoyer M, Michopoulou A, Rousselle P (2020) Decellularized scaffolds for skin repair and regeneration. Appl Sci 10(10):3435

    Article  CAS  Google Scholar 

  • Elder BD, Eleswarapu SV, Athanasiou KA (2009) Extraction techniques for the decellularization of tissue engineered articular cartilage constructs. Biomaterials 30(22):3749–3756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esmaeili A et al (2023) Acellular fish skin for wound healing. Int Wound J 20(7):2924–2941

    Article  PubMed  PubMed Central  Google Scholar 

  • Farag A et al (2014) Decellularized periodontal ligament cell sheets with recellularization potential. J Dent Res 93(12):1313–1319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Figliuzzi M, Bonandrini B, Remuzzi A (2017) Decellularized kidney matrix as functional material for whole organ tissue engineering. J Appl Biomater Funct Mater 15(4):e326–e333

    CAS  PubMed  Google Scholar 

  • Fitzpatrick JC, Clark PM, Capaldi FM (2008) Effect of decellularization protocol on the mechanical behavior of porcine descending aorta. Int J Biomater 2010:1–11

    Article  Google Scholar 

  • Forouzesh F, Rabbani M, Bonakdar S (2019) A comparison between ultrasonic bath and direct sonicator on osteochondral tissue decellularization. J Med Signals Sens 9(4):227

    Article  PubMed  PubMed Central  Google Scholar 

  • Frantz C, Stewart KM, Weaver VM (2010) The extracellular matrix at a glance. J Cell Sci 123(24):4195–4200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardin C et al (2015) Decellularization and delipidation protocols of bovine bone and pericardium for bone grafting and guided bone regeneration procedures. PLoS ONE 10(7):e0132344

    Article  PubMed  PubMed Central  Google Scholar 

  • Gilbert TW (2012) Strategies for tissue and organ decellularization. J Cell Biochem 113(7):2217–2222

    Article  CAS  PubMed  Google Scholar 

  • Gilbert TW, Sellaro TL, Badylak SF (2006) Decellularization of tissues and organs. Biomaterials 27(19):3675–3683

    CAS  PubMed  Google Scholar 

  • Gilbert TW et al (2008) Collagen fiber alignment and biaxial mechanical behavior of porcine urinary bladder derived extracellular matrix. Biomaterials 29(36):4775–4782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilpin A, Yang Y (2017) Decellularization strategies for regenerative medicine: from processing techniques to applications. BioMed Res Int 2017:1–13

    Article  Google Scholar 

  • Gilpin SE et al (2014) Perfusion decellularization of human and porcine lungs: bringing the matrix to clinical scale. J Heart Lung Transplant 33(3):298–308

    Article  PubMed  Google Scholar 

  • Gil-Ramírez A et al (2020) Pressurized carbon dioxide as a potential tool for decellularization of pulmonary arteries for transplant purposes. Sci Rep 10(1):1–12

    Article  Google Scholar 

  • Goh S-K et al (2013) Perfusion-decellularized pancreas as a natural 3D scaffold for pancreatic tissue and whole organ engineering. Biomaterials 34(28):6760–6772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grab M et al (2021) Customized 3D printed bioreactors for decellularization—High efficiency and quality on a budget. Artif Organs 45(12):1477–1490

    Article  CAS  PubMed  Google Scholar 

  • Guo P et al (2023) Decellularized extracellular matrix particle-based biomaterials for cartilage repair applications. J Mater Sci Technol 160:194–203

    Article  Google Scholar 

  • Guyette JP et al (2016) Bioengineering human myocardium on native extracellular matrix. Circ Res 118(1):56–72

    Article  CAS  PubMed  Google Scholar 

  • Harburger DS, Calderwood DA (2009) Integrin signalling at a glance. J Cell Sci 122(2):159–163

    Article  CAS  PubMed  Google Scholar 

  • Hoshiba, T., et al., (2016) Decellularized extracellular matrix as an. Vitro

  • Hussey GS, Dziki JL, Badylak SF (2018) Extracellular matrix-based materials for regenerative medicine. Nat Rev Mater 3(7):159–173

    Article  ADS  CAS  Google Scholar 

  • Hynes RO (2009) The extracellular matrix: not just pretty fibrils. Science 326(5957):1216–1219

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Inci I (2022) Characterization of decellularized chicken skin as a tissue engineering scaffold. Biotechnol Appl Biochem 69(5):2257–2266

    Article  CAS  PubMed  Google Scholar 

  • Ingram JH et al (2007) The use of ultrasonication to aid recellularization of acellular natural tissue scaffolds for use in anterior cruciate ligament reconstruction. Tissue Eng 13(7):1561–1572

    Article  CAS  PubMed  Google Scholar 

  • Isidan A et al (2019) Decellularization methods for developing porcine corneal xenografts and future perspectives. Xenotransplantation 26(6):e12564

    Article  PubMed  PubMed Central  Google Scholar 

  • Kajbafzadeh A-M et al (2013) Determining the optimal decellularization and sterilization protocol for preparing a tissue scaffold of a human-sized liver tissue. Tissue Eng Part C Methods 19(8):642–651

    Article  CAS  PubMed  Google Scholar 

  • Kang E-S et al (2018) Two-dimensional material-based bionano platforms to control mesenchymal stem cell differentiation. Biomater Res 22(1):10

    Article  PubMed  PubMed Central  Google Scholar 

  • Kazemi T et al (2021) Decellularized bovine aorta as a promising 3D elastin scaffold for vascular tissue engineering applications. Regen Med 16(12):1037–1050

    Article  CAS  PubMed  Google Scholar 

  • Keane T, Saldin L, Badylak S (2016) Decellularization of mammalian tissues: preparing extracellular matrix bioscaffolds. Characterisation and design of tissue scaffolds. Elsevier, pp 75–103

    Chapter  Google Scholar 

  • Keshvari MA et al (2021) Decellularization of kidney tissue: comparison of sodium lauryl ether sulfate and sodium dodecyl sulfate for allotransplantation in rat. Cell Tissue Res 386(2):365–378

    Article  CAS  PubMed  Google Scholar 

  • Khakpour E et al (2022) Assessing the biocompatibility of bovine tendon scaffold, a step forward in tendon tissue engineering. Cell Tissue Bank 2022:1–14

    Google Scholar 

  • Khakpour E et al (2023) Assessing the biocompatibility of bovine tendon scaffold, a step forward in tendon tissue engineering. Cell Tissue Bank 24(1):11–24

    Article  CAS  PubMed  Google Scholar 

  • Kim YS et al (2019) Applications of decellularized extracellular matrix in bone and cartilage tissue engineering. Bioeng Transl Med 4(1):83–95

    Article  PubMed  Google Scholar 

  • Kohannezhad K et al (2022) The in vitro analysis of migration and polarity of blastema cells in the extracellular matrix derived from bovine mesenteric in the presence of fibronectin. Anatomy Cell Biol 55:229–238

    Article  Google Scholar 

  • Kropp BP et al (1995) Experimental assessment of small intestinal submucosa as a bladder wall substitute. Urology 46(3):396–400

    Article  CAS  PubMed  Google Scholar 

  • Kuljanin M et al (2017) Collagenase treatment enhances proteomic coverage of low-abundance proteins in decellularized matrix bioscaffolds. Biomaterials 144:130–143

    Article  CAS  PubMed  Google Scholar 

  • Kuşoğlu A et al (2023) Different decellularization methods in bovine lung tissue reveals distinct biochemical composition, stiffness, and viscoelasticity in reconstituted hydrogels. ACS Appl Bio Mater 6(2):793–805

    Article  PubMed  PubMed Central  Google Scholar 

  • Larsen M et al (2006) The matrix reorganized: extracellular matrix remodeling and integrin signaling. Curr Opin Cell Biol 18(5):463–471

    Article  CAS  PubMed  Google Scholar 

  • Lemon G et al (2014) The development of the bioartificial lung. Br Med Bull 110(1):35–45

    Article  PubMed  Google Scholar 

  • Lin P et al (2004) Assessing porcine liver-derived biomatrix for hepatic tissue engineering. Tissue Eng 10(7–8):1046–1053

    Article  CAS  PubMed  Google Scholar 

  • Luo L et al (2016) Decellularization of porcine articular cartilage explants and their subsequent repopulation with human chondroprogenitor cells. J Mech Behav Biomed Mater 55:21–31

    Article  CAS  Google Scholar 

  • Luo Y, Huang S, Ma L (2021) Zwitterionic hydrogel-coated heart valves with improved endothelialization and anti-calcification properties. Mater Sci Eng C 128:112329

    Article  CAS  Google Scholar 

  • Lutolf M, Hubbell J (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23(1):47–55

    Article  CAS  PubMed  Google Scholar 

  • Mansour RN et al (2023) The effect of source animal age, decellularization protocol, and sterilization method on bovine acellular dermal matrix as a scaffold for wound healing and skin regeneration. Artif Organs 47(2):302–316

    Article  CAS  PubMed  Google Scholar 

  • Masola V et al (2018) Heparanase: a multitasking protein involved in extracellular matrix (ECM) remodeling and intracellular events. Cells 7(12):236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCrary MW et al (2020) Novel sodium deoxycholate-based chemical decellularization method for peripheral nerve. Tissue Eng Part C Methods 26(1):23–36

    Article  CAS  PubMed  Google Scholar 

  • McKee RA, Wingert RA (2016) Repopulating decellularized kidney scaffolds: an avenue for ex vivo organ generation. Materials 9(3):190

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Meezan E et al (1975) A simple, versatile, nondisruptive method for the isolation of morphologically and chemically pure basement membranes from several tissues. Life Sci 17(11):1721–1732

    Article  CAS  PubMed  Google Scholar 

  • Mendibil U et al (2020) Tissue-specific decellularization methods: rationale and strategies to achieve regenerative compounds. Int J Mol Sci 21(15):5447

    Article  PubMed  PubMed Central  Google Scholar 

  • Mendoza-Novelo B et al (2011) Decellularization of pericardial tissue and its impact on tensile viscoelasticity and glycosaminoglycan content. Acta Biomater 7(3):1241–1248

    Article  CAS  PubMed  Google Scholar 

  • Meyer SR et al (2006) Comparison of aortic valve allograft decellularization techniques in the rat. J Biomed Mater Res Part A 79(2):254–262

    Article  Google Scholar 

  • Montserrat N, Garreta E, Izpisua Belmonte JC (2016) Regenerative strategies for kidney engineering. FEBS J 283(18):3303–3324

    Article  CAS  PubMed  Google Scholar 

  • Namiri M et al (2017) Engineering natural heart valves: possibilities and challenges. J Tissue Eng Regen Med 11(5):1675–1683

    Article  CAS  PubMed  Google Scholar 

  • Nayakawde NB et al (2020) In vitro regeneration of decellularized pig esophagus using human amniotic stem cells. BioResearch Open Access 9(1):22–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neumann A et al (2013) Heart valve engineering: decellularized allograft matrices in clinical practice. Biomedizinische Technik/biomed Eng 58(5):453–456

    Article  Google Scholar 

  • O’Neill DJ et al (2013) Decellularization of human and porcine lung tissues for pulmonary tissue engineering. Ann Thorac Surg 96(3):1046–1056

    Article  PubMed  PubMed Central  Google Scholar 

  • Ott HC et al (2008) Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med 14(2):213–221

    Article  CAS  PubMed  Google Scholar 

  • Pang K, Du L, Wu X (2010) A rabbit anterior cornea replacement derived from acellular porcine cornea matrix, epithelial cells and keratocytes. Biomaterials 31(28):7257–7265

    Article  CAS  PubMed  Google Scholar 

  • Pellegata AF et al (2013) Detergent-enzymatic decellularization of swine blood vessels: insight on mechanical properties for vascular tissue engineering. BioMed Res Int 2013:1–8

    Article  Google Scholar 

  • Pesaraklou A et al (2019) Use of cerium oxide nanoparticles: a good candidate to improve skin tissue engineering. Biomed Mater 14(3):035008

    Article  ADS  CAS  PubMed  Google Scholar 

  • Petersen TH et al (2012) Matrix composition and mechanics of decellularized lung scaffolds. Cells Tissues Organs 195(3):222–231

    Article  CAS  PubMed  Google Scholar 

  • Prasertsung I et al (2008) Development of acellular dermis from porcine skin using periodic pressurized technique. J Biomed Mater Res Part B 85(1):210–219

    Article  Google Scholar 

  • Protzman NM et al (2023) Placental-derived biomaterials and their application to wound healing: a review. Bioengineering 10(7):829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabbani M, Zakian N, Alimoradi N (2021) Contribution of physical methods in decellularization of animal tissues. J Med Signals Sens 11(1):1

    Article  PubMed  PubMed Central  Google Scholar 

  • Ren H et al (2013) Evaluation of two decellularization methods in the development of a whole-organ decellularized rat liver scaffold. Liver Int 33(3):448–458

    Article  CAS  PubMed  Google Scholar 

  • Ross EA et al (2012) Mouse stem cells seeded into decellularized rat kidney scaffolds endothelialize and remodel basement membranes. Organogenesis 8(2):49–55

    Article  PubMed  PubMed Central  Google Scholar 

  • Roth SP et al (2019) Transforming growth factor beta 3-loaded decellularized equine tendon matrix for orthopedic tissue engineering. Int J Mol Sci 20(21):5474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothrauff BB, Tuan RS (2020) Decellularized bone extracellular matrix in skeletal tissue engineering. Biochem Soc Trans 48(3):755–764

    Article  CAS  PubMed  Google Scholar 

  • Sajed R et al (2022) Introduction of an efficient method for placenta decellularization with high potential to preserve ultrastructure and support cell attachment. Artif Organs 46(3):375–386

    Article  CAS  PubMed  Google Scholar 

  • Schaefer L, Iozzo RV (2008) Biological functions of the small leucine-rich proteoglycans: from genetics to signal transduction. J Biol Chem 283(31):21305–21309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaner PJ et al (2004) Decellularized vein as a potential scaffold for vascular tissue engineering. J Vasc Surg 40(1):146–153

    Article  PubMed  Google Scholar 

  • Schmidt D et al (2008) In vitro heart valve tissue engineering. Tissue engineering. Springer, pp 319–330

    Chapter  Google Scholar 

  • Schreiner AJ et al (2020) Clinical application of the basic science of articular cartilage pathology and treatment. J Knee Surg 33(11):1056–1068

    Article  PubMed  Google Scholar 

  • Seo Y, Jung Y, Kim SH (2018) Decellularized heart ECM hydrogel using supercritical carbon dioxide for improved angiogenesis. Acta Biomater 67:270–281

    Article  CAS  PubMed  Google Scholar 

  • Shahabipour F et al (2013) Scaffolds derived from cancellous bovine bone support mesenchymal stem cells’ maintenance and growth. In Vitro Cell Dev Biol Anim 49(6):440–448

    Article  CAS  PubMed  Google Scholar 

  • Shakir S, Hackett TL, Mostaço-Guidolin LB (2022) Bioengineering lungs: an overview of current methods, requirements, and challenges for constructing scaffolds. Front Bioeng Biotechnol 2022:10

    Google Scholar 

  • Shi P et al (2015) Biocompatible surgical meshes based on decellularized human amniotic membrane. Mater Sci Eng C 54:112–119

    Article  CAS  Google Scholar 

  • Simsa R et al (2018) Systematic in vitro comparison of decellularization protocols for blood vessels. PLoS ONE 13(12):e0209269

    Article  PubMed  PubMed Central  Google Scholar 

  • Snyder Y, Jana S (2022) Strategies for development of decellularized heart valve scaffolds for tissue engineering. Biomaterials 288:121675

    Article  CAS  PubMed  Google Scholar 

  • Song M et al (2017) The repairing of full-thickness skin deficiency and its biological mechanism using decellularized human amniotic membrane as the wound dressing. Mater Sci Eng C 77:739–747

    Article  CAS  Google Scholar 

  • Su Z et al (2014) Enhancement of skin wound healing with decellularized scaffolds loaded with hyaluronic acid and epidermal growth factor. Mater Sci Eng C 44:440–448

    Article  ADS  CAS  Google Scholar 

  • Sullivan DC et al (2012) Decellularization methods of porcine kidneys for whole organ engineering using a high-throughput system. Biomaterials 33(31):7756–7764

    Article  CAS  PubMed  Google Scholar 

  • Sutherland AJ et al (2015) The bioactivity of cartilage extracellular matrix in articular cartilage regeneration. Adv Healthc Mater 4(1):29–39

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  • Syed O et al (2014) Evaluation of decellularization protocols for production of tubular small intestine submucosa scaffolds for use in oesophageal tissue engineering. Acta Biomater 10(12):5043–5054

    Article  CAS  PubMed  Google Scholar 

  • Syedain ZH et al (2013) Decellularized tissue-engineered heart valve leaflets with recellularization potential. Tissue Eng Part A 19(5–6):759–769

    Article  CAS  PubMed  Google Scholar 

  • Szychlinska MA et al (2022) Three-dimensional bioprinting for cartilage tissue engineering: insights into naturally-derived bioinks from land and marine sources. J Funct Biomater 13(3):118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tavassoli A et al (2015) Mesenchymal stem cells can survive on the extracellular matrix-derived decellularized bovine articular cartilage scaffold. Iran J Basic Med Sci 18(12):1221–1227

    PubMed  PubMed Central  Google Scholar 

  • Tebyanian H et al (2019) Lung tissue engineering: an update. J Cell Physiol 234(11):19256–19270

    Article  CAS  PubMed  Google Scholar 

  • Tong Q et al (2022) Hybrid heart valves with VEGF-loaded zwitterionic hydrogel coating for improved anti-calcification and re-endothelialization. Mater Today Biol 17:100459

    Article  CAS  Google Scholar 

  • Tsuji K, Kitamura S, Wada J (2022) Potential strategies for kidney regeneration with stem cells: an overview. Front Cell Dev Biol 2022:10

    Google Scholar 

  • VeDepo MC et al (2017) Recellularization of decellularized heart valves: progress toward the tissue-engineered heart valve. J Tissue Eng 8:2041731417726327

    Article  PubMed  PubMed Central  Google Scholar 

  • Vega SL, Kwon MY, Burdick JA (2017) Recent advances in hydrogels for cartilage tissue engineering. Eur Cell Mater 33:59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y et al (2002) A tough biodegradable elastomer. Nat Biotechnol 20(6):602–606

    Article  CAS  PubMed  Google Scholar 

  • Wang B et al (2010) Fabrication of cardiac patch with decellularized porcine myocardial scaffold and bone marrow mononuclear cells. J Biomed Mater Res Part A 94(4):1100–1110

    Article  Google Scholar 

  • Watanabe M et al (2019) Construction of sinusoid-scale microvessels in perfusion culture of a decellularized liver. Acta Biomater 95:307–318

    Article  PubMed  Google Scholar 

  • Wu T, Economopoulos KP, Ott HC (2017) Engineering bioartificial lungs for transplantation. Curr Stem Cell Rep 3(2):55–67

    Article  Google Scholar 

  • Xia C et al (2019) Decellularized cartilage as a prospective scaffold for cartilage repair. Mater Sci Eng C 101:588–595

    Article  CAS  Google Scholar 

  • Xian X, Gopal S, Couchman JR (2010) Syndecans as receptors and organizers of the extracellular matrix. Cell Tissue Res 339(1):31–46

    Article  CAS  PubMed  Google Scholar 

  • Xiao H et al (2023) Recent advances in decellularized biomaterials for wound healing. Materials Today Bio 19:100589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xing Q et al (2015) Decellularization of fibroblast cell sheets for natural extracellular matrix scaffold preparation. Tissue Eng Part C Methods 21(1):77–87

    Article  CAS  PubMed  Google Scholar 

  • Xu H et al (2014) Comparison of decellularization protocols for preparing a decellularized porcine annulus fibrosus scaffold. PLoS ONE 9(1):e86723

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Yang Z et al (2010) Fabrication and repair of cartilage defects with a novel acellular cartilage matrix scaffold. Tissue Eng Part C Methods 16(5):865–876

    Article  CAS  PubMed  Google Scholar 

  • Young BM et al (2021) A two-step bioreactor for decellularized lung epithelialization. Cells Tissues Organs 210(4):301–310

    Article  CAS  PubMed  Google Scholar 

  • Yusof F, Shaban M, Azhim A (2019) Development of decellularized meniscus using closed sonication treatment system: potential scaffolds for orthopedics tissue engineering applications. Int J Nanomed 14:5491

    Article  CAS  Google Scholar 

  • Zambon JP et al (2014) Kidney regeneration: where we are and future perspectives. World J Nephrol 3(3):24

    Article  PubMed  PubMed Central  Google Scholar 

  • Zambon JP et al (2018) Comparative analysis of two porcine kidney decellularization methods for maintenance of functional vascular architectures. Acta Biomater 75:226–234

    Article  CAS  PubMed  Google Scholar 

  • Zang M et al (2012) Decellularized tracheal matrix scaffold for tissue engineering. Plast Reconstr Surg 130(3):532–540

    Article  CAS  PubMed  Google Scholar 

  • Zaszczyńska A et al (2021) Advances in 3D printing for tissue engineering. Materials 14(12):3149

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Zhang X et al (2022a) Decellularized extracellular matrix scaffolds: Recent trends and emerging strategies in tissue engineering. Bioactive Materials 10:15–31

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q et al (2022b) Preparation and application of decellularized ECM-based biological scaffolds for articular cartilage repair: a review. Front Bioeng Biotechnol 10:908082

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang D et al (2023) 3D-bioprinted human lipoaspirate-derived cellladen skin constructs for healing of full-thickness skin defects. IJB 9(4):718

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Mahdavi-Shahri for his technical assistance and help throughout this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin Tavassoli.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Consent for publication

No identifying patient information is included in this report.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehghani, S., Aghaee, Z., Soleymani, S. et al. An overview of the production of tissue extracellular matrix and decellularization process. Cell Tissue Bank 25, 369–387 (2024). https://doi.org/10.1007/s10561-023-10112-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-023-10112-1

Keywords

Navigation