Skip to main content

Advertisement

Log in

Regenerative medicine improve neurodegenerative diseases

  • Mini Review
  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

Regenerative medicine is a subdivision of medicine that improves methods to regrow, repair or replace unhealthy cells and tissues to return to normal function. Cell therapy, gene therapy, nanomedicine as choices used to cure neurodegenerative disease. Recently, studies related to the treatment of neurodegenerative disorders have been focused on stem cell therapy and Nano-drugs beyond other than regenerative medicine. Hence, by data from experimental models and clinical trials, we review the impact of stem cell therapy, gene therapy, and nanomedicine on the treatment of Alzheimer’s disease (AD), Parkinson’s disease (PD), and Amyotrophic lateral sclerosis (ALS). Indeed, improved knowledge and continued research on gene therapy and nanomedicine in treating Alzheimer's disease, Parkinson's disease, and Amyotrophic lateral sclerosis lead to advancements in effective and practical treatments for neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

PD:

Parkinson’s disease

ALS:

Amyotrophic lateral sclerosis

BDNF:

Brain-derived neurotrophic factor

NGF:

Nerve growth factor

DA:

Dopaminergic neuron

NSCs:

Neural stem cells

ESCs:

Embryonic stem cells

VEGF:

Vascular endothelial cell growth factor

AAV:

Adeno-associated virus

References

  • Aderibigbe BA (2017) Metal-based nanoparticles for the treatment of infectious diseases. Molecules 22(8):1370

    PubMed  PubMed Central  Google Scholar 

  • Alam M, Abbas K (2021) An insight into neurodegenerative disorders, their therapeutic approaches and drugs available for tackling with neurodegeneration: a review. IAR J Med Case Rep 2(3):1

    Google Scholar 

  • Alipour M et al (2019) Stem cell therapy in Alzheimer’s disease: possible benefits and limiting drawbacks. Mol Biol Rep 46(1):1425–1446

    CAS  PubMed  Google Scholar 

  • Alves S et al (2017) Interleukin-2 improves amyloid pathology, synaptic failure and memory in Alzheimer’s disease mice. Brain 140(3):826–842

    PubMed  Google Scholar 

  • Amini N et al (2016) Efficacy of human adipose tissue-derived stem cells on neonatal bilirubin encephalopathy in rats. Neurotox Res 29(4):514–524

    CAS  PubMed  Google Scholar 

  • Amini N et al (2019) Transplantation of adipose tissue-derived stem cells into brain through cerebrospinal fluid in rat models: protocol development and initial outcome data. Curr Stem Cell Res Ther 14(2):191–195

    CAS  PubMed  Google Scholar 

  • Atala A (2004) Tissue engineering and regenerative medicine: concepts for clinical application. Rejuvenation Res 7(1):15–31

    PubMed  Google Scholar 

  • Azzouz M et al (2004) VEGF delivery with retrogradely transported lentivector prolongs survival in a mouse ALS model. Nature 429(6990):413–417

    CAS  PubMed  Google Scholar 

  • Babahajian A et al (2019) Neuroprotective effects of trolox, human chorionic gonadotropin, and carnosic acid on hippocampal neurodegeneration after ischemia-reperfusion injury. Curr Stem Cell Res Ther 14(2):177–183

    CAS  PubMed  Google Scholar 

  • Bangde P et al (2017) Potential gene therapy towards treating neurodegenerative disea ses employing polymeric nanosystems. Curr Gene Ther 17(2):170–183

    CAS  PubMed  Google Scholar 

  • Biferi MG et al (2017) A new AAV10-U7-mediated gene therapy prolongs survival and restores function in an ALS mouse model. Mol Ther 25(9):2038–2052

    CAS  PubMed  PubMed Central  Google Scholar 

  • Björklund A, Lindvall O (2000) Cell replacement therapies for central nervous system disorders. Nat Neurosci 3(6):537–544

    PubMed  Google Scholar 

  • Brooks BR et al (2000) El escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1(5):293–299

    CAS  PubMed  Google Scholar 

  • Chen T et al (2017) Small-sized mPEG–PLGA nanoparticles of schisantherin a with sustained release for enhanced brain uptake and anti-parkinsonian activity. ACS Appl Mater Interfaces 9(11):9516–9527

    CAS  PubMed  Google Scholar 

  • Chen W et al (2018) Black phosphorus nanosheets as a neuroprotective nanomedicine for neurodegenerative disorder therapy. Adv Mater 30(3):1703458

    Google Scholar 

  • Chowdhury SR et al (2016) Modulation of amyloid aggregates into nontoxic coaggregates by hydroxyquinoline appended polyfluorene. ACS Appl Mater Interface 8(21):13309–13319

    CAS  Google Scholar 

  • Colonna M, Butovsky O (2017) Microglia function in the central nervous system during health and neurodegeneration. Annu Rev Immunol 35:441–468

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cornejo F, von Bernhardi R (2016) Age-dependent changes in the activation and regulation of microglia. Gl Cell Health Disease CNS. 1:205

    Google Scholar 

  • Cummings J, Fox N (2017) Defining disease modifying therapy for Alzheimer’s disease. J Prev Alzheimers Dis 4(2):109–115

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cummings J et al (2017) Alzheimer’s disease drug development pipeline: 2017. Alzheimer’s Dement Trans Res Clin Interv 3(3):367–384

    Google Scholar 

  • Dong X (2018) Current strategies for brain drug delivery. Theranostics 8(6):1481–1493

    CAS  PubMed  PubMed Central  Google Scholar 

  • El Andaloussi S et al (2013) Exosomes for targeted siRNA delivery across biological barriers. Adv Drug Deliv Rev 65(3):391–397

    PubMed  Google Scholar 

  • Emborg M et al (2009) Response of aged parkinsonian monkeys to in vivo gene transfer of GDNF. Neurobiol Dis 36(2):303–311

    CAS  PubMed  PubMed Central  Google Scholar 

  • Enciu AM et al (2011) Neuroregeneration in neurodegenerative disorders. BMC Neurol 11(1):1–7

    Google Scholar 

  • Garbuzova-Davis S et al (2002) Positive effect of transplantation of hNT neurons (NTera 2/D1 Cell-Line) in a model of familial amyotrophic lateral sclerosis-volume 174, number 2 (2002) pages 169-180. Exp Neurol 2(175):451

    Google Scholar 

  • Hagell P et al (1999) Sequential bilateral transplantation in Parkinson’s disease: effects of the second graft. Brain 122(6):1121–1132

    PubMed  Google Scholar 

  • Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297(5580):353–356

    CAS  PubMed  Google Scholar 

  • Harper JM et al (2004) Axonal growth of embryonic stem cell-derived motoneurons in vitro and in motoneuron-injured adult rats. Proc Natl Acad Sci 101(18):7123–7128

    CAS  PubMed  PubMed Central  Google Scholar 

  • Herzog CD et al (2013) Enhanced neurotrophic distribution, cell signaling and neuroprotection following substantia nigral versus striatal delivery of AAV2-NRTN (CERE-120). Neurobiol Dis 58:38–48

    CAS  PubMed  Google Scholar 

  • Hunsberger JG et al (2016) Accelerating stem cell trials for Alzheimer’s disease. Lancet Neurol 15(2):219–230

    PubMed  Google Scholar 

  • Hwang D et al (2009) Intrathecal transplantation of human neural stem cells overexpressing VEGF provide behavioral improvement, disease onset delay and survival extension in transgenic ALS mice. Gene Ther 16(10):1234–1244

    CAS  PubMed  Google Scholar 

  • Jankovic J, Aguilar LG (2008) Current approaches to the treatment of Parkinson’s disease. Neuropsychiatr Dis Treat 4(4):743–757

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kerr DA et al (2003) Human embryonic germ cell derivatives facilitate motor recovery of rats with diffuse motor neuron injury. J Neurosci 23(12):5131–5140

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kiernan MC et al (2011) Amyotrophic lateral sclerosis. Lancet 377(9769):942–955

    CAS  PubMed  Google Scholar 

  • Kim SU, De Vellis J (2009) Stem cell-based cell therapy in neurological diseases: a review. J Neurosci Res 87(10):2183–2200

    CAS  PubMed  Google Scholar 

  • Kiyota T et al (2015) AAV2/1 CD74 gene transfer reduces β-amyloidosis and improves learning and memory in a mouse model of Alzheimer’s disease. Mol Ther 23(11):1712–1721

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kojima R et al (2018) Designer exosomes produced by implanted cells intracerebrally deliver therapeutic cargo for Parkinson’s disease treatment. Nat Commun 9(1):1305

    PubMed  PubMed Central  Google Scholar 

  • Korecka JA et al (2017) Repulsive guidance molecule a (RGMa) induces neuropathological and behavioral changes that closely resemble Parkinson’s disease. J Neurosci 37(39):9361–9379

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kotterman MA, Chalberg TW, Schaffer DV (2015) Viral vectors for gene therapy: translational and clinical outlook. Annu Rev Biomed Eng 17:63–89

    CAS  PubMed  Google Scholar 

  • Lee HJ et al (2007) Human neural stem cells over-expressing VEGF provide neuroprotection, angiogenesis and functional recovery in mouse stroke model. PLoS ONE 2(1):e156

    PubMed  PubMed Central  Google Scholar 

  • LeWitt PA, Giladi N, Navon N (2019) Pharmacokinetics and efficacy of a novel formulation of carbidopa-levodopa (Accordion Pill®) in Parkinson’s disease. Parkinsonism Relat Disord 65:131–138

    PubMed  Google Scholar 

  • Li D et al (2017) Slow intrathecal injection of rAAVrh10 enhances its transduction of spinal cord and therapeutic efficacy in a mutant SOD1 model of ALS. Neuroscience 365:192–205

    CAS  PubMed  Google Scholar 

  • Lindvall O, Kokaia Z (2010) Stem cells in human neurodegenerative disorders—time for clinical translation? J Clin Investig 120(1):29–40

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maney V, Singh M (2017) An in vitro assessment of novel chitosan/bimetallic PtAu nanocomposites as delivery vehicles for doxorubicin. Nanomedicine 12(21):2625–2640

    CAS  PubMed  Google Scholar 

  • Martin JB (1999) Molecular basis of the neurodegenerative disorders. N Engl J Med 340(25):1970–1980

    CAS  PubMed  Google Scholar 

  • Mazibuko Z et al (2015) A review of the potential role of nano-enabled drug delivery technologies in amyotrophic lateral sclerosis: lessons learned from other neurodegenerative disorders. J Pharm Sci 104(4):1213–1229

    CAS  PubMed  Google Scholar 

  • Miles GB et al (2004) Functional properties of motoneurons derived from mouse embryonic stem cells. J Neurosci 24(36):7848–7858

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morizane A (2019) Cell therapy for Parkinson’s disease with induced pluripotent stem cells. Rinsho Shinkeigaku Clin Neurol 59(3):119–124

    Google Scholar 

  • Murlidharan G, Samulski RJ, Asokan A (2014) Biology of adeno-associated viral vectors in the central nervous system. Front Mol Neurosci 7:76

    PubMed  PubMed Central  Google Scholar 

  • O’Connor DM, Boulis NM (2015) Gene therapy for neurodegenerative diseases. Trends Mol Med 21(8):504–512

    PubMed  Google Scholar 

  • Onyango IG (2018) Modulation of mitochondrial bioenergetics as a therapeutic strategy in Alzheimer’s disease. Neural Regen Res 13(1):19

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ortolano S, Spuch C, Navarro C (2012) Present and future of adeno associated virus based gene therapy approaches. Recent Pat Endocr Metab Immune Drug Discove 6(1):47–66

    CAS  Google Scholar 

  • Pahuja R et al (2015) Trans-blood brain barrier delivery of dopamine-loaded nanoparticles reverses functional deficits in parkinsonian rats. ACS Nano 9(5):4850–4871

    CAS  PubMed  Google Scholar 

  • Piguet F, Alves S, Cartier N (2017) Clinical gene therapy for neurodegenerative diseases: past, present, and future. Hum Gene Ther 28(11):988–1003

    CAS  PubMed  Google Scholar 

  • Pillay S et al (2016) An essential receptor for adeno-associated virus infection. Nature 530(7588):108–112

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pisati F et al (2007) Induction of neurotrophin expression via human adult mesenchymal stem cells: implication for cell therapy in neurodegenerative diseases. Cell Transplant 16(1):41–55

    PubMed  Google Scholar 

  • Qu Y et al (2019) Characteristics and advantages of adeno-associated virus vector-mediated gene therapy for neurodegenerative diseases. Neural Regen Res 14(6):931

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rafii MS et al (2014) A phase1 study of stereotactic gene delivery of AAV2-NGF for Alzheimer’s disease. Alzheimers Dement 10(5):571–581

    PubMed  Google Scholar 

  • Raikwar SP et al (2019) Targeted gene editing of glia maturation factor in microglia: a novel Alzheimer’s disease therapeutic target. Mol Neurobiol 56(1):378–393

    CAS  PubMed  Google Scholar 

  • MS Rao, A Khanna, S Shin, (2008) Stem cells for the treatment of neurological disorders. CNS Neurol Disord-Drug Targ (Former Curr Drug Targ-CNS Neurol Disord), 7(1): p. 98-109

  • Rapti K et al (2012) Neutralizing antibodies against AAV serotypes 1, 2, 6, and 9 in sera of commonly used animal models. Mol Ther 20(1):73–83

    CAS  PubMed  Google Scholar 

  • Redmond DE et al (2007) Behavioral improvement in a primate Parkinson’s model is associated with multiple homeostatic effects of human neural stem cells. Proc Natl Acad Sci 104(29):12175–12180

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ristow M (2004) Neurodegenerative disorders associated with diabetes mellitus. J Mol Med 82(8):510–529

    PubMed  Google Scholar 

  • Saadoun D et al (2011) Regulatory T-cell responses to low-dose interleukin-2 in HCV-induced vasculitis. N Engl J Med 365(22):2067–2077

    CAS  PubMed  Google Scholar 

  • Sahni JK et al (2011) Neurotherapeutic applications of nanoparticles in Alzheimer’s disease. J Control Release 152(2):208–231

    CAS  PubMed  Google Scholar 

  • Sakthiswary R, Raymond AA (2012) Stem cell therapy in neurodegenerative diseases: from principles to practice. Neural Regen Res 7(23):1822

    PubMed  PubMed Central  Google Scholar 

  • Sanooghi D et al (2021) Differentiation of mesenchymal stem cells derived from human adipose tissue into cholinergic-like cells: an in vitro study. Basic Clin Neurosci 12(3):315

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sasmita AO (2019) Current viral-mediated gene transfer research for treatment of Alzheimer’s disease. Biotechnol Genet Eng Rev 35(1):26–45

    CAS  PubMed  Google Scholar 

  • Stamatovic SM, Keep RF, Andjelkovic AV (2008) Brain endothelial cell-cell junctions: how to “open” the blood brain barrier. Curr Neuropharmacol 6(3):179–192

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takagi Y et al (2005) Dopaminergic neurons generated from monkey embryonic stem cells function in a Parkinson primate model. J Clin Investig 115(1):102–109

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tong BC-K et al (1865) (2018) Calcium signaling in Alzheimer’s disease & therapies. Biochimica Et Biophysica Acta (BBA)-Mol Cell Res. 11:1745

    Google Scholar 

  • Venkatas J, Singh M (2021) Nanomedicine-mediated optimization of immunotherapeutic approaches in cervical cancer. Nanomedicine 16(15):1311–1328

    CAS  PubMed  Google Scholar 

  • Wang M-M et al (2018) Innate immune activation in Alzheimer’s disease. Ann Trans Med 6(10):1

    Google Scholar 

  • Watabe K et al (2000) Rescue of lesioned adult rat spinal motoneurons by adenoviral gene transfer of glial cell line-derived neurotrophic factor. J Neurosci Res 60(4):511–519

    CAS  PubMed  Google Scholar 

  • Xu L et al (2006) Human neural stem cell grafts ameliorate motor neuron disease in SOD-1 transgenic rats. Transplantation 82(7):865–875

    PubMed  Google Scholar 

  • Yang JA et al (2014) α-Synuclein’s adsorption, conformation, and orientation on cationic gold nanoparticle surfaces seeds global conformation change. J Phys Chem B 118(13):3559–3571

    CAS  PubMed  Google Scholar 

  • Yaqoob SB et al (2020) Gold, silver, and palladium nanoparticles: a chemical tool for biomedical applications. Front Chem 8:376

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yasuhara T et al (2006) Transplantation of human neural stem cells exerts neuroprotection in a rat model of Parkinson’s disease. J Neurosci 26(48):12497–12511

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yi L et al (2014) A non-invasive, rapid method to genotype late-onset Alzheimer’s disease-related apolipoprotein E gene polymorphisms. Neural Regen Res 9(1):69

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yin H et al (2014) Non-viral vectors for gene-based therapy. Nat Rev Genet 15(8):541–555

    CAS  PubMed  Google Scholar 

  • Zhang N et al (2018) Localized delivery of curcumin into brain with polysorbate 80-modified cerasomes by ultrasound-targeted microbubble destruction for improved Parkinson’s disease therapy. Theranostics 8(8):2264

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao L et al (2016) Intracerebral adeno-associated virus gene delivery of apolipoprotein E2 markedly reduces brain amyloid pathology in Alzheimer’s disease mouse models. Neurobiol Aging 44:159–172

    CAS  PubMed  Google Scholar 

  • Kabanov A, Gendelman HE (2007) Nanomedicine in the diagnosis and therapy of neurodegenerative disorders." Progress in Polymer Science 32(8–9):1054–1082

  • Lunn JS, Sakowski SA, Hur J, Feldman EL (2011) Stem cell technology for neurodegenerative diseases. Annu Neurol 70(3):353–361

Download references

Acknowledgements

We thank the Department of Biology, Science and Research Branch of Islamic Azad University, and the Cellular and Molecular Research Center of Iran University of medical science for their Support.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

NA, NA And SA had the original idea, wrote initial topics and headlines and the first draft. GhL, SN, BD, LM, and PM participated in the writing, editing, and final revising of the manuscript. VS, MJ, and MD supervised the findings of this work. All authors discussed the results and contributed to the final manuscript.

Corresponding authors

Correspondence to Nooshin Ahmadirad or Naser Amini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashraf, S.S., Hosseinpour Sarmadi, V., Larijani, G. et al. Regenerative medicine improve neurodegenerative diseases. Cell Tissue Bank 24, 639–650 (2023). https://doi.org/10.1007/s10561-022-10062-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-022-10062-0

Keywords

Navigation