Skip to main content
Log in

Mathematical Modeling of Fractional Differential Filtration Dynamics Based on Models with Hilfer–Prabhakar Derivative

  • Published:
Cybernetics and Systems Analysis Aims and scope

Abstract

We construct a generalized mathematical model to describe the fractional differential dynamics of filtration processes in fractured porous media, based on the use of the concept of Hilfer–Prabhakar fractional derivative. Within the framework of this model, we obtain a number of closed form solutions to boundary-value problems of filtration theory for modeling the dynamics of pressures at launch of wells in case of plane-radial filtration, as well as by activity of galleries under plane-parallel filtration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. L. Sobolev, “Locally nonequilibrium models of transfer processes,” Uspekhi Fiz. Nauk, Vol. 167, No. 10, 1095–1106 (1997).

    Article  Google Scholar 

  2. M. M. Khasanov and G. T. Bulgakova, Nonlinear and Nonequilibrium Effects in Rheologically Complex Media [in Russian], Inst. Komp. Issled., Moscow–Izhevsk (2003).

    Google Scholar 

  3. V. M. Bulavatsky, Yu. G. Kryvonos, and V. V. Skopetsky, Nonclassical Mathematical Models of Heat and Mass Transfer Processes [in Ukrainian], Naukova Dumka, Kyiv (2005).

    Google Scholar 

  4. S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Sci. Publ., Switzerland (1993).

    MATH  Google Scholar 

  5. V. V. Uchaikin, The Fractional Derivatives Method [in Russian], Artishok Publ. House, Ulyanovsk (2008).

    Google Scholar 

  6. F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity, Imperial College Press, London (2010).

    Book  MATH  Google Scholar 

  7. I. Podlubny, Fractional Differential Equations, Academic Press, New York (1999).

    MATH  Google Scholar 

  8. A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam (2006).

    MATH  Google Scholar 

  9. V. M. Bulavatskiy, “Some mathematical models of geoinformatics for describing mass transfer processes under time-nonlocal conditions,” J. Autom. Inform. Sci., Vol. 43, Issue 6, 49–59 (2011).

    Article  Google Scholar 

  10. V. M. Bulavatsky, “Nonclassical mathematical model in geoinformatics to solve dynamic problems for nonequilibrium nonisothermal seepage fields,” Cybern. and Syst. Analysis, Vol. 47, No. 6, 898–906 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  11. V. M. Bulavatsky and Yu. G. Krivonos, “Mathematical modelling in the geoinformation problem of the dynamics of geomigration under space-time nonlocality,” Cybern. and Syst. Analysis, Vol. 48, No. 4, 539–546 (2012).

    Article  MATH  Google Scholar 

  12. V. M. Bulavatsky, “One generalization of the fractional differential geoinformation model of research of locally-nonequilibrium geomigration processes,” J. Autom. Inform. Sci., Vol. 45, No. 1, 59–69 (2013).

    Article  Google Scholar 

  13. V. M. Bulavatsky, “Numerical modeling of the dynamics of a convection diffusion process locally non-equilibrium in time,” Cybern. and Syst. Analysis, Vol. 48, No. 6, 861–869 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  14. R. Garra, R. Gorenflo, F. Polito, and Z. Tomovski, “Hilfer–Prabhakar derivatives and some applications,” Applied Mathematics and Computation, Vol. 242, 576–589 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  15. F. Polito and Z. Tomovski, “Some properties of Prabhakar-type operators,” arXiv:1508.03224 (2015).

  16. T. R. Prabhakar, “A singular integral equation with a generalized Mittag-Leffler function in the kernel,” Yokohama Math. J., Vol. 19, 7–15 (1971).

    MathSciNet  MATH  Google Scholar 

  17. M. D’Ovidio and F. Polito, “Fractional diffusion-telegraph equations and their associated stochastic solutions,” arXiv:1307.1696 (2013).

  18. G. I. Barenblatt, J. P. Zheltov, and I. N. Kochina, “On the main representations of the theory of filtration of homogeneous fluids in fractured rock,” Prikladnaya Matem. Mekh., Vol. 24, Issue 3, 852–864 (1960).

    Google Scholar 

  19. G. I. Barenblatt, V. M. Entov, and V. M. Ryzhik, Fluid and Gas Motion in Natural Rocks [in Russian], Nedra, Moscow (1984).

    Google Scholar 

  20. I. Sneddon, The Use of Integral Transform, Mc. Graw-Hill Book Comp., New York (1973).

    MATH  Google Scholar 

  21. Yu. Povstenko, Linear Fractional Diffusion-Wave Equation for Scientists and Engineers, Springer Int. Publ. Switzerland (2015).

    Book  MATH  Google Scholar 

  22. R. Gorenflo, A. A. Kilbas, F. Mainardi, and S. V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications, Springer-Verlag, Berlin (2014).

    MATH  Google Scholar 

  23. T. Sandev, Z. Tomovski, and J. L. Dubbeldam, “Generalized Langevin equation with a tree parameter Mittag-Leffler noise,” Physica A, Vol. 390, No. 21, 3627–3636 (2011).

    Article  Google Scholar 

  24. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, Oxford Science Publications, Oxford University Press (1986).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Bulavatsky.

Additional information

Translated from Kibernetika i Sistemnyi Analiz, No. 2, March–April, 2017, pp. 51–64.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulavatsky, V.M. Mathematical Modeling of Fractional Differential Filtration Dynamics Based on Models with Hilfer–Prabhakar Derivative. Cybern Syst Anal 53, 204–216 (2017). https://doi.org/10.1007/s10559-017-9920-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10559-017-9920-z

Keywords

Navigation