Skip to main content
Log in

Reliability analysis of computer solutions of systems of linear algebraic equations with approximate initial data

  • Systems Analysis
  • Published:
Cybernetics and Systems Analysis Aims and scope

A weighted least squares problem {ie863-01} with positive definite weights M and N is considered, where A ∈ Rm×n is a rank-deficient matrix, b ∈ Rm. The hereditary, computational, and global errors of a weighted normal pseudosolution are estimated for perturbed initial data, including the case where the rank of the perturbed matrix varies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ben Israel and T. N. E. Greville, Generalized Inverse: Theory and Applications, Springer Verlag, New York (2003).

    MATH  Google Scholar 

  2. A. Albert, Regression, Pseudoinversion, and Recurrent Estimation [Russian translation], Nauka, Moscow (1977).

    Google Scholar 

  3. N. F. Kirichenko, “Analytical representation of perturbations of pseudoinverse matrices,” Cybern. Syst. Analysis, 33, No. 2, 230–238 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  4. I. V. Sergienko, E. F. Galba, and V. S. Deineka, “Limiting representations of weighted pseudoinverse matrices with positive definite weights. Problem regularization,” Cybern. Syst. Analysis, 39, No. 6, 816–830 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  5. Kh. D. Ikramov and M. Matin Far, “Updating the minimum-norm solutions to the recursive least squares problem with linear equality constraints,” Comp. Math. Math. Phys., 44, No. 10, 1640–1648 (2004).

    MathSciNet  Google Scholar 

  6. G. H. Golub and C. F. Van Loan, Matrix Computations, The Johns Hopkins University Press, Baltimore (1996).

    MATH  Google Scholar 

  7. S. K. Godunov, A. G. Antonov, O. P. Kirilyuk, and V. N. Kostin, Guaranteed Accuracy of the Solution of Systems of Linear Algebraic Equations in Euclidean Spaces [in Russian], Nauka, Novosibirsk (1992).

    Google Scholar 

  8. L. Elden, “Perturbation theory for the least squares problem with linear equality constraints,” SIAM J. Numer. Anal., 17, 338–350 (1980).

    Article  MATH  MathSciNet  Google Scholar 

  9. A. Bjork, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, PA (1996).

    Google Scholar 

  10. A. N. Malyshev, An Introduction to Computational Linear Algebra [in Russian], Nauka, Novosibirsk (1991).

    Google Scholar 

  11. V. V. Voevodin and Yu. A. Kuznetsov, Matrices and Computations [in Russian], Nauka, Moscow (1989).

    Google Scholar 

  12. A. N. Khimich, “Perturbation bounds for the least squares problem,” Cybern. Syst. Analysis, 32, No. 3, 434–436 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  13. A. N. Khimich, S. A. Voitsekhovskii, and R. N. Brusnikin, “Reliability of solutions for linear mathematical models with approximate initial data,” Matem. Mashiny i Sistemy, No. 3, 3–17 (2004).

  14. L. Elden, “A weighted pseudoinverse, generalized singular values and constrained least squares problems,” BIT. 22, 487–502 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  15. Y. Wei and H. Wu, “Expression for the perturbation of the weighted Moore-Penrose inverse,” Comput. and Math. with Appl., 39, 13–18 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  16. M. Wei, Supremum and Stability of Weighted Pseudoinverses and Weighted Least Squares Problems: Analysis and Computations, Huntington, New York (2001).

  17. D. Wang, “Some topics on weighted Moore-Penrose inverse, weighted least squares and weighted regularized Tikhonov problems,” Appl. Math. and Comput., 157, 243–267 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  18. Y. Wei and D. Wang, “Condition numbers and perturbation of weighted Moore-Penrose inverse and weighted least squares problem,” Appl. Math. and Comput., 145, 45–58 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  19. C. F. Van Loan, “Generalizing the singular value decomposition,” SIAM J. Numer. Anal., 13, 76–83 (1976).

    Article  MATH  MathSciNet  Google Scholar 

  20. I. N. Molchanov and E. F. Galba, “A weighted pseudoinverse for complex matrices,” Ukr. Math. J., 35, No. 1, 46–50 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  21. C. L. Lawson and R. J. Henson, Solving Least Squares Problems, Prentice-Hall, Englewood Cliffs, NJ (1986).

    Google Scholar 

  22. A. N. Khimich and E. A. Nikolaevskaya, “Estimating the error of the solution of the weighted lest squares problem,” Komp. Matem., No. 3, 36–45 (2006).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Khimich.

Additional information

Translated from Kibernetika i Sistemnyi Analiz, No. 6, pp. 83–95, November–December 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khimich, A.N., Nikolaevskaya, E.A. Reliability analysis of computer solutions of systems of linear algebraic equations with approximate initial data. Cybern Syst Anal 44, 863–874 (2008). https://doi.org/10.1007/s10559-008-9062-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10559-008-9062-4

Keywords

Navigation