Skip to main content
Log in

Importance of Blood Rheology in the Pathophysiology of Atherothrombosis

  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Elevated blood viscosity is an integral component of vascular shear stress that contributes to the site specificity of atherogenesis, rapid growth of atherosclerotic lesions, and increases their propensity to rupture. Ex vivo measurements of whole blood viscosity (WBV) is a predictor of cardiovascular events in apparently healthy individuals and studies of cardiovascular disease patients. The association of an elevated WBV and incident cardiovascular events remains significant in multivariate models that adjust for major cardiovascular risk factors. These prospective data suggest that measurement of WBV may be valuable as part of routine cardiovascular profiling, thereby potentially useful data for risk stratification and therapeutic interventions. The recent development of a high throughput blood viscometer, which is capable of rapidly performing blood viscosity measurements across 10,000 shear rates using a single blood sample, enables the assessment of blood flow characteristics in different regions of the circulatory system and opens new opportunities for detecting and monitoring cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Baskurt OK, Meiselman HJ. Blood rheology and hemodynamics. Semin Thromb Hemost. 2003;29:435–50.

    Article  PubMed  CAS  Google Scholar 

  2. Frangos SG, Gahtan V, Sumpio B. Localization of atherosclerosis: role of hemodynamics. Arch Surg. 1999;134:1142–9.

    Article  PubMed  CAS  Google Scholar 

  3. Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. JAMA. 1999;282:2035–42.

    Article  PubMed  CAS  Google Scholar 

  4. Lee AJ, Mowbray PI, Lowe GD, Rumley A, Fowkes FG, Allan PL. Blood viscosity and elevated carotid intima-media thickness in men and women: the Edinburgh Artery Study. Circulation. 1998;97:1467–73.

    Article  PubMed  CAS  Google Scholar 

  5. Kensey KR. The mechanistic relationships between hemorheological characteristics and cardiovascular disease. Curr Med Res Opin. 2003;19:587–96.

    Article  PubMed  Google Scholar 

  6. Rosencranz R, Bogen SA. Clinical laboratory measurement of serum, plasma, and blood viscosity. Am J Clin Pathol. 2006;125:S78–86.

    PubMed  Google Scholar 

  7. Cokelet GR, Goldsmith HL. Decreased hydrodynamic resistance in the two-phase flow of blood through small vertical tubes at low flow rates. Circ Res. 1991;68:1–17.

    Article  PubMed  CAS  Google Scholar 

  8. Stuart J, Kenny MW. Blood rheology. J Clin Pathol. 1980;33:417–29.

    Article  PubMed  CAS  Google Scholar 

  9. Fung YC. Biomechanics: mechanical properties of living tissues. 1st ed. New York: Springer; 1981. p. 101–37.

    Google Scholar 

  10. Gaehtgens P, Pries AR, Ley K. Structural, hemodynamic and rheological characteristics of blood flow in the circulation. In: Chien S, Dormandy J, Ernst E, Matrai A, editors. Clinical hemorheology: applications in cardiovascular and haematological disease, diabetes, surgery, and gynecology. 1st ed. Boston: Martinus Nijhoff; 1987. p. 97–124.

    Google Scholar 

  11. Meiselman HJ. Rheology of shape-transformed human red cells. Biorheology. 1978;15:225–37.

    PubMed  CAS  Google Scholar 

  12. Goldsmith HL, Cokelet GR, Gaehtgens P. Robin Fåhraeus: evolution of his concepts in cardiovascular physiology. Am J Physiol. 1989;257:H1005–15.

    PubMed  CAS  Google Scholar 

  13. Wan J, Forsyth AM, Stone HA. Red blood cell dynamics: from cell deformation to ATP release. Integr Biol. 2011;3:972–81.

    Article  CAS  Google Scholar 

  14. Dintenfass L. Blood microrheology: viscosity factors in blood flow, ischaemia, and thrombosis. An introduction to molecular and clinical haematology. 1st ed. New York: Appleton-Century-Crofts; 1971.

    Google Scholar 

  15. Dinnar U. Cardiovascular fluid mechanics. 1st ed. Boca Raton: CRC Press; 1981.

    Google Scholar 

  16. Seplowitz AH, Chien S, Smith FR. Effects of lipoproteins on plasma viscosity. Atherosclerosis. 1981;38:89–95.

    Article  PubMed  CAS  Google Scholar 

  17. Leonhardt H, Arntz HR, Klemens UH. Studies of plasma viscosity in primary hyperlipoproteinaemia. Atherosclerosis. 1977;28:29–40.

    Article  PubMed  CAS  Google Scholar 

  18. Ditzel J, Kampmann J. Whole-blood viscosity, hematocrit and plasma protein in normal subjects at different ages. Acta Physiol Scand. 1971;81:264–8.

    Article  PubMed  CAS  Google Scholar 

  19. Harkness J. The viscosity of human blood plasma; its measurement in health and disease. Biorheology. 1971;8:171–93.

    PubMed  CAS  Google Scholar 

  20. Charm SE, Paz H, Kurland GS. Reduced plasma viscosity among joggers compared with non-joggers. Biorheology. 1979;16:185–9.

    PubMed  CAS  Google Scholar 

  21. Dintenfass L. Rheology of blood in diagnostic and preventive medicine. 1st ed. London: Butterworth; 1976.

    Google Scholar 

  22. Dormandy JA. Medical and engineering problems of blood viscosity. Biomed Eng. 1974;9:284–9.

    PubMed  CAS  Google Scholar 

  23. Lowe GD. Blood rheology in arterial disease. Clin Sci (Lond). 1986;71:137–46.

    CAS  Google Scholar 

  24. Rosenson RS, Lowe GD. Effects of lipids and lipoproteins on thrombosis and rheology. Atherosclerosis. 1998;140:271–80.

    Article  PubMed  CAS  Google Scholar 

  25. Sloop GD, Garber DW. The effects of low-density lipoprotein and high-density lipoprotein on blood viscosity correlate with their association with risk of atherosclerosis in humans. Clin Sci (Lond). 1997;92:473–9.

    CAS  Google Scholar 

  26. Lowe GD. Blood viscosity, lipoproteins, and cardiovascular risk. Circulation. 1992;85:2329–31.

    Article  PubMed  CAS  Google Scholar 

  27. Høieggen A, Fossum E, Moan A, Enger E, Kjeldsen SE. Whole-blood viscosity and the insulin-resistance syndrome. J Hypertens. 1998;16:203–10.

    Article  PubMed  Google Scholar 

  28. Sloop GD. A unifying theory of atherogenesis. Med Hypotheses. 1996;47:321–5.

    Article  PubMed  CAS  Google Scholar 

  29. Fowkes FG, Lowe GD, Rumley A, Lennie SE, Smith FB, Donnan PT. The relationship between blood viscosity and blood pressure in a random sample of the population aged 55 to 74 years. Eur Heart J. 1993;14:597–601.

    Article  PubMed  CAS  Google Scholar 

  30. Smith WC, Lowe GD, Lee AJ, Tunstall-Pedoe H. Rheological determinants of blood pressure in a Scottish adult population. J Hypertens. 1992;10:467–72.

    Article  PubMed  CAS  Google Scholar 

  31. Letcher RL, Chien S, Pickering TG, Sealey JE, Laragh JH. Direct relationship between blood pressure and blood viscosity in normal and hypertensive subjects. Role of fibrinogen and concentration. Am J Med. 1981;70:1195–202.

    Article  PubMed  CAS  Google Scholar 

  32. Devereux RB, Case DB, Alderman MH, Pickering TG, Chien S, Laragh JH. Possible role of increased blood viscosity in the hemodynamics of systemic hypertension. Am J Cardiol. 2000;85:1265–8.

    Article  PubMed  CAS  Google Scholar 

  33. Zannad F, Stoltz JF. Blood rheology in arterial hypertension. J Hypertens Suppl. 1992;10:S69–78.

    Article  PubMed  CAS  Google Scholar 

  34. Zannad F, Voisin P, Brunotte F, Bruntz JF, Stoltz JF, Gilgenkrantz JM. Haemorheological abnormalities in arterial hypertension and their relation to cardiac hypertrophy. J Hypertens. 1988;6:293–7.

    Article  PubMed  CAS  Google Scholar 

  35. Slonim A, Cristal N. Cardiovascular diseases, blood rheology, and dihydropyridine calcium antagonists. J Cardiovasc Pharmacol. 1992;19:S96–8.

    PubMed  Google Scholar 

  36. Kearney-Schwartz A, Virion JM, Stoltz JF, Drouin P, Zannad F. Haemorheological disturbances in hypertensive type 2 diabetic patients—influence of antihypertensive therapy. Fundam Clin Pharmacol. 2007;21:387–96.

    Article  PubMed  CAS  Google Scholar 

  37. Kwiterovich Jr PO. The metabolic pathways of high-density lipoprotein, low-density lipoprotein, and triglycerides: a current review. Am J Cardiol. 2000;86:5L–10L.

    Article  PubMed  CAS  Google Scholar 

  38. de Simone G, Devereux RB, Chien S, Alderman MH, Atlas SA, Laragh JH. Relation of blood viscosity to demographic and physiologic variables and to cardiovascular risk factors in apparently normal adults. Circulation. 1990;81:107–17.

    Article  PubMed  Google Scholar 

  39. Rosenson RS, McCormick A, Uretz EF. Distribution of blood viscosity values and biochemical correlates in healthy adults. Clin Chem. 1996;42:1189–95.

    PubMed  CAS  Google Scholar 

  40. Sloop GD, Garber DW. The effects of low-density lipoprotein and high-density lipoprotein on blood viscosity correlate with their association with risk of atherosclerosis in humans. Clin Sci (Lond). 1997;92:473–9.

    CAS  Google Scholar 

  41. Koenig W, Sund M, Ernst E, Mraz W, Hombach V, Keil U. Association between rheology and components of lipoproteins in human blood. Results from the MONICA project. Circulation. 1992;85:2197–204.

    Article  PubMed  CAS  Google Scholar 

  42. Stamos TD, Rosenson RS. Low high density lipoprotein levels are associated with an elevated blood viscosity. Atherosclerosis. 1999;146:161–5.

    Article  PubMed  CAS  Google Scholar 

  43. Jaeger BR. Evidence for maximal treatment of atherosclerosis: drastic reduction of cholesterol and fibrinogen restores vascular homeostasis. Ther Apher. 2001;5:207–11.

    Article  PubMed  CAS  Google Scholar 

  44. Carroll S, Cooke CB, Butterly RJ. Plasma viscosity, fibrinogen and the metabolic syndrome: effect of obesity and cardiorespiratory fitness. Blood Coagul Fibrinolysis. 2000;11:71–8.

    PubMed  CAS  Google Scholar 

  45. Jax TW, Peters AJ, Plehn G, Schoebel FC. Hemostatic risk factors in patients with coronary artery disease and type 2 diabetes—a two year follow-up of 243 patients. Cardiovasc Diabetol. 2009;8:48.

    Article  PubMed  Google Scholar 

  46. Libby P, Ridker PM, Maseri A. Inflammation and Atherosclerosis. Circulation. 2002;105:1135–43.

    Article  PubMed  CAS  Google Scholar 

  47. Cho YI, Mooney MP, Cho DJ. Hemorheological disorders in diabetes mellitus. J Diabetes Sci Technol. 2008;2:1130–8.

    PubMed  Google Scholar 

  48. Lowe GD, Drummond MM, Forbes CD, Barbenel JC. The effects of age and cigarette-smoking on blood and plasma viscosity in men. Scott Med J. 1980;25:13–7.

    PubMed  CAS  Google Scholar 

  49. Levenson J, Simon AC, Cambien FA, Beretti C. Cigarette smoking and hypertension. Factors independently associated with blood hyperviscosity and arterial rigidity. Arteriosclerosis. 1987;7:572–7.

    Article  PubMed  CAS  Google Scholar 

  50. Ernst E, Koenig W, Matrai A, Filipiak B, Stieber J. Blood rheology in healthy cigarette smokers. Results from the MONICA project, Augsburg. Arteriosclerosis. 1988;8:385–8.

    Article  PubMed  CAS  Google Scholar 

  51. Ernst E. Haemorheological consequences of chronic cigarette smoking. J Cardiovasc Risk. 1995;2:435–9.

    Article  PubMed  CAS  Google Scholar 

  52. Wannamethee SG, Lowe GD, Shaper AG, Rumley A, Lennon L, Whincup PH. The metabolic syndrome and insulin resistance: relationship to haemostatic and inflammatory markers in older non-diabetic men. Atherosclerosis. 2005;181:101–8.

    Article  PubMed  CAS  Google Scholar 

  53. Yarnell JW. Smoking and cardiovascular disease. QJM. 1996;89:493–8.

    Article  PubMed  CAS  Google Scholar 

  54. Fowkes FG, Pell JP, Donnan PT, et al. Sex differences in susceptibility to etiologic factors for peripheral atherosclerosis. Importance of plasma fibrinogen and blood viscosity. Arterioscler Thromb. 1994;14:862–8.

    Article  PubMed  CAS  Google Scholar 

  55. Kameneva MV, Watach MJ, Borovetz HS. Gender difference in rheologic properties of blood and risk of cardiovascular diseases. Clin Hemorheol Microcirc. 1999;21:357–63.

    PubMed  CAS  Google Scholar 

  56. Yarnell JW, Sweetnam PM, Rumley A, Lowe GD. Lifestyle and hemostatic risk factors for ischemic heart disease: the Caerphilly Study. Arterioscler Thromb Vasc Biol. 2000;20:271–9.

    Article  PubMed  CAS  Google Scholar 

  57. Feher G, Koltai K, Kesmarky G, Szapary L, Juricskay I, Toth K. Hemorheological parameters and aging. Clin Hemorheol Microcirc. 2006;35:89–98.

    PubMed  Google Scholar 

  58. Carallo C, Irace C, De Franceschi MS, et al. The effect of aging on blood and plasma viscosity. An 11.6 years follow-up study. Clin Hemorheol Microcirc. 2011;47:67–74.

    PubMed  CAS  Google Scholar 

  59. Kensey KR, Cho YI. Protective adaptation hypothesis as the etiology of atherosclerosis. J Invasive Cardiol. 1992;4:448–58.

    Google Scholar 

  60. Friedman MH, Bargeron CB, Deters OJ, Hutchins GM, Mark FF. Correlation between wall shear and intimal thickness at a coronary artery branch. Atherosclerosis. 1987;68:27–33.

    Article  PubMed  CAS  Google Scholar 

  61. Texon M. The hemodynamic basis of atherosclerosis. Further observations: the bifurcation lesion. Bull N Y Acad Med. 1976;52:187–200.

    PubMed  CAS  Google Scholar 

  62. Lowe GD, Fowkes FG, Dawes J, Donnan PT, Lennie SE, Housley E. Blood viscosity, fibrinogen, and activation of coagulation and leukocytes in peripheral arterial disease and the normal population in the Edinburgh Artery Study. Circulation. 1993;87:1915–20.

    Article  PubMed  CAS  Google Scholar 

  63. Danesh J, Collins R, Peto R, Lowe GD. Haematocrit, viscosity, erythrocyte sedimentation rate: meta-analyses of prospective studies of coronary heart disease. Eur Heart J. 2000;21:515–20.

    Article  PubMed  CAS  Google Scholar 

  64. Koenig W, Sund M, Filipiak B, Doring A, Lowel H, Ernst E. Plasma viscosity and the risk of coronary heart disease: results from the MONICA-Augsburg Cohort Study, 1984 to 1992. Arterioscler Thromb Vasc Biol. 1998;18:768–72.

    Article  PubMed  CAS  Google Scholar 

  65. Lowe GD, Lee AJ, Rumley A, Price JF, Fowkes FG. Blood viscosity and risk of cardiovascular events: the Edinburgh Artery Study. Br J Haematol. 1997;96:168–73.

    Article  PubMed  CAS  Google Scholar 

  66. Wang S, Boss AH, Kensey KR, Rosenson RS. Variations of whole blood viscosity using Rheolog scanning capillary viscometer. Clin Chim Acta. 2003;332:79–82.

    Article  PubMed  CAS  Google Scholar 

  67. Kim S, Cho YI, Hogenauer WN, Kensey KR. A method of isolating surface tension and yield stress effects in a U-shaped scanning capillary-tube viscometer using a Casson model. J Non-Newtonian Fluid Mech. 2002;103:205–19.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert S. Rosenson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cowan, A.Q., Cho, D.J. & Rosenson, R.S. Importance of Blood Rheology in the Pathophysiology of Atherothrombosis. Cardiovasc Drugs Ther 26, 339–348 (2012). https://doi.org/10.1007/s10557-012-6402-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-012-6402-4

Key words

Navigation