Skip to main content
Log in

Epigenetic reprogramming of T cells: unlocking new avenues for cancer immunotherapy

  • REVIEW
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

T cells, a key component of cancer immunotherapy, undergo a variety of histone modifications and DNA methylation changes since their bone marrow progenitor stages before developing into CD8+ and CD4+ T cells. These T cell types can be categorized into distinct subtypes based on their functionality and properties, such as cytotoxic T cells (Tc), helper T cells (Th), and regulatory T cells (Treg) as subtypes for CD8+ and CD4+ T cells. Among these, the CD4+ CD25+ Tregs potentially contribute to cancer development and progression by lowering T effector (Teff) cell activity under the influence of the tumor microenvironment (TME). This contributes to the development of therapeutic resistance in patients with cancer. Subsequently, these individuals become resistant to monoclonal antibody therapy as well as clinically established immunotherapies. In this review, we delineate the different epigenetic mechanisms in cancer immune response and its involvement in therapeutic resistance. Furthermore, the possibility of epi-immunotherapeutic methods based on histone deacetylase inhibitors and histone methyltransferase inhibitors are under investigation. In this review we highlight EZH2 as the principal driver of cancer cell immunoediting and an immune escape regulator. We have addressed in detail how understanding T cell epigenetic regulation might bring unique inventive strategies to overcome drug resistance and increase the efficacy of cancer immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

N/A.

References

  1. Mostoslavsky, R., Alt, F. W., & Bassing, C. H. (2003). Chromatin dynamics and locus accessibility in the immune system. Nature Immunology, 4(7), 603–606. https://doi.org/10.1038/ni0703-603

    Article  CAS  PubMed  Google Scholar 

  2. Sawalha, A. H. (2008). Epigenetics and T-cell immunity. Autoimmunity, 41(4), 245–252. https://doi.org/10.1080/08916930802024145

    Article  CAS  PubMed  Google Scholar 

  3. Hongo, D., Tang, X., Dutt, S., Nador, R. G., & Strober, S. (2012). Interactions between NKT cells and Tregs are required for tolerance to combined bone marrow and organ transplants. Blood, 119(6), 1581–1589. https://doi.org/10.1182/blood-2011-08-371948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Takahashi, T., & Sakaguchi, S. (2003). Naturally arising CD25+CD4+ regulatory T cells in maintaining immunologic self-tolerance and preventing autoimmune disease. Current Molecular Medicine, 3(8), 693–706. https://doi.org/10.2174/1566524033479429

    Article  CAS  PubMed  Google Scholar 

  5. Sakaguchi, S., Fukuma, K., Kuribayashi, K., & Masuda, T. (1985). Organ-specific autoimmune diseases induced in mice by elimination of T cell subset. I. Evidence for the active participation of T cells in natural self-tolerance; deficit of a T cell subset as a possible cause of autoimmune disease. The Journal of Experimental Medicine, 161(1), 72–87. https://doi.org/10.1084/jem.161.1.72

    Article  CAS  PubMed  Google Scholar 

  6. Sugihara, S., Izumi, Y., Yoshioka, T., Yagi, H., Tsujimura, T., Tarutani, O., Kohno, Y., Murakami, S., Hamaoka, T., & Fujiwara, H. (1988). Autoimmune thyroiditis induced in mice depleted of particular T cell subsets. I. Requirement of Lyt-1 dull L3T4 bright normal T cells for the induction of thyroiditis. The Journal of Immunology, 141(1), 105–113. https://www.ncbi.nlm.nih.gov/pubmed/2967864

  7. Huehn, J., Polansky, J. K., & Hamann, A. (2009). Epigenetic control of FOXP3 expression: The key to a stable regulatory T-cell lineage? Nature Reviews Immunology, 9(2), 83–89. https://doi.org/10.1038/nri2474

    Article  CAS  PubMed  Google Scholar 

  8. Koch, U., & Radtke, F. (2011). Mechanisms of T cell development and transformation. Annual Review of Cell and Developmental Biology, 27, 539–562. https://doi.org/10.1146/annurev-cellbio-092910-154008

    Article  CAS  PubMed  Google Scholar 

  9. Rothenberg, E. V., Moore, J. E., & Yui, M. A. (2008). Launching the T-cell-lineage developmental programme. Nature Reviews Immunology, 8(1), 9–21. https://doi.org/10.1038/nri2232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Farlik, M., Halbritter, F., Muller, F., Choudry, F. A., Ebert, P., Klughammer, J., Farrow, S., Santoro, A., Ciaurro, V., Mathur, A., Uppal, R., Stunnenberg, H. G., Ouwehand, W. H., Laurenti, E., Lengauer, T., Frontini, M., & Bock, C. (2016). DNA methylation dynamics of human hematopoietic stem cell differentiation. Cell Stem Cell, 19(6), 808–822. https://doi.org/10.1016/j.stem.2016.10.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kim, J., Sif, S., Jones, B., Jackson, A., Koipally, J., Heller, E., Winandy, S., Viel, A., Sawyer, A., Ikeda, T., Kingston, R., & Georgopoulos, K. (1999). Ikaros DNA-binding proteins direct formation of chromatin remodeling complexes in lymphocytes. Immunity, 10(3), 345–355. https://doi.org/10.1016/s1074-7613(00)80034-5

    Article  CAS  PubMed  Google Scholar 

  12. O’Neill, D. W., Schoetz, S. S., Lopez, R. A., Castle, M., Rabinowitz, L., Shor, E., Krawchuk, D., Goll, M. G., Renz, M., Seelig, H. P., Han, S., Seong, R. H., Park, S. D., Agalioti, T., Munshi, N., Thanos, D., Erdjument-Bromage, H., Tempst, P., & Bank, A. (2000). An ikaros-containing chromatin-remodeling complex in adult-type erythroid cells. Molecular and Cellular Biology, 20(20), 7572–7582. https://doi.org/10.1128/MCB.20.20.7572-7582.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sridharan, R., & Smale, S. T. (2007). Predominant interaction of both Ikaros and Helios with the NuRD complex in immature thymocytes. Journal of Biological Chemistry, 282(41), 30227–30238. https://doi.org/10.1074/jbc.M702541200

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, Y., Ng, H. H., Erdjument-Bromage, H., Tempst, P., Bird, A., & Reinberg, D. (1999). Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes & Development, 13(15), 1924–1935. https://doi.org/10.1101/gad.13.15.1924

    Article  CAS  Google Scholar 

  15. Yoshida, T., Hazan, I., Zhang, J., Ng, S. Y., Naito, T., Snippert, H. J., Heller, E. J., Qi, X., Lawton, L. N., Williams, C. J., & Georgopoulos, K. (2008). The role of the chromatin remodeler Mi-2beta in hematopoietic stem cell self-renewal and multilineage differentiation. Genes & Development, 22(9), 1174–1189. https://doi.org/10.1101/gad.1642808

    Article  CAS  Google Scholar 

  16. Bellavia, D., Mecarozzi, M., Campese, A. F., Grazioli, P., Talora, C., Frati, L., Gulino, A., & Screpanti, I. (2007). Notch3 and the Notch3-upregulated RNA-binding protein HuD regulate Ikaros alternative splicing. EMBO Journal, 26(6), 1670–1680. https://doi.org/10.1038/sj.emboj.7601626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Collins, B., Clambey, E. T., Scott-Browne, J., White, J., Marrack, P., Hagman, J., & Kappler, J. W. (2013). Ikaros promotes rearrangement of TCR alpha genes in an Ikaros null thymoma cell line. European Journal of Immunology, 43(2), 521–532. https://doi.org/10.1002/eji.201242757

    Article  CAS  PubMed  Google Scholar 

  18. Naito, T., Gomez-Del Arco, P., Williams, C. J., & Georgopoulos, K. (2007). Antagonistic interactions between Ikaros and the chromatin remodeler Mi-2beta determine silencer activity and Cd4 gene expression. Immunity, 27(5), 723–734. https://doi.org/10.1016/j.immuni.2007.09.008

    Article  CAS  PubMed  Google Scholar 

  19. Trinh, L. A., Ferrini, R., Cobb, B. S., Weinmann, A. S., Hahm, K., Ernst, P., Garraway, I. P., Merkenschlager, M., & Smale, S. T. (2001). Down-regulation of TDT transcription in CD4(+)CD8(+) thymocytes by Ikaros proteins in direct competition with an Ets activator. Genes & Development, 15(14), 1817–1832. https://doi.org/10.1101/gad.905601

    Article  CAS  Google Scholar 

  20. Kathrein, K. L., Lorenz, R., Innes, A. M., Griffiths, E., & Winandy, S. (2005). Ikaros induces quiescence and T-cell differentiation in a leukemia cell line. Molecular and Cellular Biology, 25(5), 1645–1654. https://doi.org/10.1128/MCB.25.5.1645-1654.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Song, C., Pan, X., Ge, Z., Gowda, C., Ding, Y., Li, H., Li, Z., Yochum, G., Muschen, M., Li, Q., Payne, K. J., & Dovat, S. (2016). Epigenetic regulation of gene expression by Ikaros, HDAC1 and Casein Kinase II in leukemia. Leukemia, 30(6), 1436–1440. https://doi.org/10.1038/leu.2015.331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Oravecz, A., Apostolov, A., Polak, K., Jost, B., Le Gras, S., Chan, S., & Kastner, P. (2015). Ikaros mediates gene silencing in T cells through Polycomb repressive complex 2. Nature Communications, 6, 8823. https://doi.org/10.1038/ncomms9823

    Article  CAS  PubMed  Google Scholar 

  23. Geimer Le Lay, A. S., Oravecz, A., Mastio, J., Jung, C., Marchal, P., Ebel, C., Dembele, D., Jost, B., Le Gras, S., Thibault, C., Borggrefe, T., Kastner, P., & Chan, S. (2014). The tumor suppressor Ikaros shapes the repertoire of notch target genes in T cells. Science Signaling, 7(317), ra28. https://doi.org/10.1126/scisignal.2004545

    Article  CAS  PubMed  Google Scholar 

  24. Avitahl, N., Winandy, S., Friedrich, C., Jones, B., Ge, Y., & Georgopoulos, K. (1999). Ikaros sets thresholds for T cell activation and regulates chromosome propagation. Immunity, 10(3), 333–343. https://doi.org/10.1016/s1074-7613(00)80033-3

    Article  CAS  PubMed  Google Scholar 

  25. Lee, P. P., Fitzpatrick, D. R., Beard, C., Jessup, H. K., Lehar, S., Makar, K. W., Perez-Melgosa, M., Sweetser, M. T., Schlissel, M. S., Nguyen, S., Cherry, S. R., Tsai, J. H., Tucker, S. M., Weaver, W. M., Kelso, A., Jaenisch, R., & Wilson, C. B. (2001). A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival. Immunity, 15(5), 763–774. https://doi.org/10.1016/s1074-7613(01)00227-8

    Article  CAS  PubMed  Google Scholar 

  26. Ji, H., Ehrlich, L. I., Seita, J., Murakami, P., Doi, A., Lindau, P., Lee, H., Aryee, M. J., Irizarry, R. A., Kim, K., Rossi, D. J., Inlay, M. A., Serwold, T., Karsunky, H., Ho, L., Daley, G. Q., Weissman, I. L., & Feinberg, A. P. (2010). Comprehensive methylome map of lineage commitment from haematopoietic progenitors. Nature, 467(7313), 338–342. https://doi.org/10.1038/nature09367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li, L., Leid, M., & Rothenberg, E. V. (2010). An early T cell lineage commitment checkpoint dependent on the transcription factor Bcl11b. Science, 329(5987), 89–93. https://doi.org/10.1126/science.1188989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li, L., Zhang, J. A., Dose, M., Kueh, H. Y., Mosadeghi, R., Gounari, F., & Rothenberg, E. V. (2013). A far downstream enhancer for murine Bcl11b controls its T-cell specific expression. Blood, 122(6), 902–911. https://doi.org/10.1182/blood-2012-08-447839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tydell, C. C., David-Fung, E. S., Moore, J. E., Rowen, L., Taghon, T., & Rothenberg, E. V. (2007). Molecular dissection of prethymic progenitor entry into the T lymphocyte developmental pathway. The Journal of Immunology, 179(1), 421–438. https://doi.org/10.4049/jimmunol.179.1.421

    Article  CAS  PubMed  Google Scholar 

  30. Li, P., Burke, S., Wang, J., Chen, X., Ortiz, M., Lee, S. C., Lu, D., Campos, L., Goulding, D., Ng, B. L., Dougan, G., Huntly, B., Gottgens, B., Jenkins, N. A., Copeland, N. G., Colucci, F., & Liu, P. (2010). Reprogramming of T cells to natural killer-like cells upon Bcl11b deletion. Science, 329(5987), 85–89. https://doi.org/10.1126/science.1188063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sellars, M., Huh, J. R., Day, K., Issuree, P. D., Galan, C., Gobeil, S., Absher, D., Green, M. R., & Littman, D. R. (2015). Regulation of DNA methylation dictates Cd4 expression during the development of helper and cytotoxic T cell lineages. Nature Immunology, 16(7), 746–754. https://doi.org/10.1038/ni.3198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Issuree, P. D., Day, K., Au, C., Raviram, R., Zappile, P., Skok, J. A., Xue, H. H., Myers, R. M., & Littman, D. R. (2018). Stage-specific epigenetic regulation of CD4 expression by coordinated enhancer elements during T cell development. Nature Communications, 9(1), 3594. https://doi.org/10.1038/s41467-018-05834-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kojo, S., Tanaka, H., Endo, T. A., Muroi, S., Liu, Y., Seo, W., Tenno, M., Kakugawa, K., Naoe, Y., Nair, K., Moro, K., Katsuragi, Y., Kanai, A., Inaba, T., Egawa, T., Venkatesh, B., Minoda, A., Kominami, R., & Taniuchi, I. (2017). Priming of lineage-specifying genes by Bcl11b is required for lineage choice in post-selection thymocytes. Nature Communications, 8(1), 702. https://doi.org/10.1038/s41467-017-00768-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kakugawa, K., Kojo, S., Tanaka, H., Seo, W., Endo, T. A., Kitagawa, Y., Muroi, S., Tenno, M., Yasmin, N., Kohwi, Y., Sakaguchi, S., Kowhi-Shigematsu, T., & Taniuchi, I. (2017). Essential roles of SATB1 in specifying T lymphocyte subsets. Cell Reports, 19(6), 1176–1188. https://doi.org/10.1016/j.celrep.2017.04.038

    Article  CAS  PubMed  Google Scholar 

  35. Kojo, S., Yasmin, N., Muroi, S., Tenno, M., & Taniuchi, I. (2018). Runx-dependent and silencer-independent repression of a maturation enhancer in the Cd4 gene. Nature Communications, 9(1), 3593. https://doi.org/10.1038/s41467-018-05803-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Finkelman, F. D., Holmes, J., Katona, I. M., Urban, J. F., Jr., Beckmann, M. P., Park, L. S., Schooley, K. A., Coffman, R. L., Mosmann, T. R., & Paul, W. E. (1990). Lymphokine control of in vivo immunoglobulin isotype selection. Annual Review of Immunology, 8, 303–333. https://doi.org/10.1146/annurev.iy.08.040190.001511

    Article  CAS  PubMed  Google Scholar 

  37. Stevens, T. L., Bossie, A., Sanders, V. M., Fernandez-Botran, R., Coffman, R. L., Mosmann, T. R., & Vitetta, E. S. (1988). Regulation of antibody isotype secretion by subsets of antigen-specific helper T cells. Nature, 334(6179), 255–258. https://doi.org/10.1038/334255a0

    Article  CAS  PubMed  Google Scholar 

  38. Cher, D. J., & Mosmann, T. R. (1987). Two types of murine helper T cell clone. II. Delayed-type hypersensitivity is mediated by TH1 clones. Journal of Immunology, 138(11), 3688–3694. https://www.ncbi.nlm.nih.gov/pubmed/2953788

  39. Park, H., Li, Z., Yang, X. O., Chang, S. H., Nurieva, R., Wang, Y. H., Wang, Y., Hood, L., Zhu, Z., Tian, Q., & Dong, C. (2005). A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nature Immunology, 6(11), 1133–1141. https://doi.org/10.1038/ni1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhu, J., Yamane, H., & Paul, W. E. (2010). Differentiation of effector CD4 T cell populations (*). Annual Review of Immunology, 28, 445–489. https://doi.org/10.1146/annurev-immunol-030409-101212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Vahedi, G., Kanno, Y., Furumoto, Y., Jiang, K., Parker, S. C., Erdos, M. R., Davis, S. R., Roychoudhuri, R., Restifo, N. P., Gadina, M., Tang, Z., Ruan, Y., Collins, F. S., Sartorelli, V., & O’Shea, J. J. (2015). Super-enhancers delineate disease-associated regulatory nodes in T cells. Nature, 520(7548), 558–562. https://doi.org/10.1038/nature14154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Avni, O., Lee, D., Macian, F., Szabo, S. J., Glimcher, L. H., & Rao, A. (2002). T(H) cell differentiation is accompanied by dynamic changes in histone acetylation of cytokine genes. Nature Immunology, 3(7), 643–651. https://doi.org/10.1038/ni808

    Article  CAS  PubMed  Google Scholar 

  43. Fields, P. E., Kim, S. T., & Flavell, R. A. (2002). Cutting edge: Changes in histone acetylation at the IL-4 and IFN-gamma loci accompany Th1/Th2 differentiation. The Journal of Immunology, 169(2), 647–650. https://doi.org/10.4049/jimmunol.169.2.647

    Article  CAS  PubMed  Google Scholar 

  44. Lee, S., Kim, J., Min, H., & Seong, R. H. (2020). RORgammat-driven T(H)17 cell differentiation requires epigenetic control by the Swi/Snf chromatin remodeling complex. iScience, 23(5), 101106. https://doi.org/10.1016/j.isci.2020.101106

  45. Olatunde, A. C., Hale, J. S., & Lamb, T. J. (2021). Cytokine-skewed Tfh cells: Functional consequences for B cell help. Trends in Immunology, 42(6), 536–550. https://doi.org/10.1016/j.it.2021.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jeon, Y. H., & Choi, Y. S. (2016). Follicular helper T (Tfh) cells in autoimmune diseases and allograft rejection. Immune Network, 16(4), 219–232. https://doi.org/10.4110/in.2016.16.4.219

    Article  PubMed  PubMed Central  Google Scholar 

  47. Choi, Y. S., Yang, J. A., & Crotty, S. (2013). Dynamic regulation of Bcl6 in follicular helper CD4 T (Tfh) cells. Current Opinion in Immunology, 25(3), 366–372. https://doi.org/10.1016/j.coi.2013.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hori, S., Nomura, T., & Sakaguchi, S. (2003). Control of regulatory T cell development by the transcription factor Foxp3. Science, 299(5609), 1057–1061. https://doi.org/10.1126/science.1079490

    Article  CAS  PubMed  Google Scholar 

  49. Trenado, A., Charlotte, F., Fisson, S., Yagello, M., Klatzmann, D., Salomon, B. L., & Cohen, J. L. (2003). Recipient-type specific CD4+CD25+ regulatory T cells favor immune reconstitution and control graft-versus-host disease while maintaining graft-versus-leukemia. The Journal of Clinical Investigation, 112(11), 1688–1696. https://doi.org/10.1172/JCI17702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bennett, C. L., Christie, J., Ramsdell, F., Brunkow, M. E., Ferguson, P. J., Whitesell, L., Kelly, T. E., Saulsbury, F. T., Chance, P. F., & Ochs, H. D. (2001). The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nature Genetics, 27(1), 20–21. https://doi.org/10.1038/83713

    Article  CAS  PubMed  Google Scholar 

  51. Zheng, Y., Josefowicz, S., Chaudhry, A., Peng, X. P., Forbush, K., & Rudensky, A. Y. (2010). Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature, 463(7282), 808–812. https://doi.org/10.1038/nature08750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tone, Y., Furuuchi, K., Kojima, Y., Tykocinski, M. L., Greene, M. I., & Tone, M. (2008). Smad3 and NFAT cooperate to induce Foxp3 expression through its enhancer. Nature Immunology, 9(2), 194–202. https://doi.org/10.1038/ni1549

    Article  CAS  PubMed  Google Scholar 

  53. Ohkura, N., Hamaguchi, M., Morikawa, H., Sugimura, K., Tanaka, A., Ito, Y., Osaki, M., Tanaka, Y., Yamashita, R., Nakano, N., Huehn, J., Fehling, H. J., Sparwasser, T., Nakai, K., & Sakaguchi, S. (2012). T cell receptor stimulation-induced epigenetic changes and Foxp3 expression are independent and complementary events required for Treg cell development. Immunity, 37(5), 785–799. https://doi.org/10.1016/j.immuni.2012.09.010

    Article  CAS  PubMed  Google Scholar 

  54. Vanvalkenburgh, J., Albu, D. I., Bapanpally, C., Casanova, S., Califano, D., Jones, D. M., Ignatowicz, L., Kawamoto, S., Fagarasan, S., Jenkins, N. A., Copeland, N. G., Liu, P., & Avram, D. (2011). Critical role of Bcl11b in suppressor function of T regulatory cells and prevention of inflammatory bowel disease. Journal of Experimental Medicine, 208(10), 2069–2081. https://doi.org/10.1084/jem.20102683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Reis e Sousa, C. (2006). Dendritic cells in a mature age. Nature Reviews Immunology, 6(6), 476–483. https://doi.org/10.1038/nri1845

    Article  CAS  PubMed  Google Scholar 

  56. Feng, Y., Arvey, A., Chinen, T., van der Veeken, J., Gasteiger, G., & Rudensky, A. Y. (2014). Control of the inheritance of regulatory T cell identity by a cis element in the Foxp3 locus. Cell, 158(4), 749–763. https://doi.org/10.1016/j.cell.2014.07.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li, X., Liang, Y., LeBlanc, M., Benner, C., & Zheng, Y. (2014). Function of a Foxp3 cis-element in protecting regulatory T cell identity. Cell, 158(4), 734–748. https://doi.org/10.1016/j.cell.2014.07.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Toker, A., Engelbert, D., Garg, G., Polansky, J. K., Floess, S., Miyao, T., Baron, U., Duber, S., Geffers, R., Giehr, P., Schallenberg, S., Kretschmer, K., Olek, S., Walter, J., Weiss, S., Hori, S., Hamann, A., & Huehn, J. (2013). Active demethylation of the Foxp3 locus leads to the generation of stable regulatory T cells within the thymus. The Journal of Immunology, 190(7), 3180–3188. https://doi.org/10.4049/jimmunol.1203473

    Article  CAS  PubMed  Google Scholar 

  59. Liu, Q., Du, F., Huang, W., Ding, X., Wang, Z., Yan, F., & Wu, Z. (2019). Epigenetic control of Foxp3 in intratumoral T-cells regulates growth of hepatocellular carcinoma. Aging (Albany NY), 11(8), 2343–2351. https://doi.org/10.18632/aging.101918

  60. Morikawa, H., Ohkura, N., Vandenbon, A., Itoh, M., Nagao-Sato, S., Kawaji, H., Lassmann, T., Carninci, P., Hayashizaki, Y., Forrest, A. R., Standley, D. M., Date, H., Sakaguchi, S., & Consortium, F. (2014). Differential roles of epigenetic changes and Foxp3 expression in regulatory T cell-specific transcriptional regulation. Proceedings of the National Academy of Sciences of the United States of America, 111(14), 5289-5294.https://doi.org/10.1073/pnas.1312717110

  61. Cox, M. A., Harrington, L. E., & Zajac, A. J. (2011). Cytokines and the inception of CD8 T cell responses. Trends in Immunology, 32(4), 180–186. https://doi.org/10.1016/j.it.2011.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Haring, J. S., Badovinac, V. P., & Harty, J. T. (2006). Inflaming the CD8+ T cell response. Immunity, 25(1), 19–29. https://doi.org/10.1016/j.immuni.2006.07.001

    Article  CAS  PubMed  Google Scholar 

  63. Intlekofer, A. M., Takemoto, N., Wherry, E. J., Longworth, S. A., Northrup, J. T., Palanivel, V. R., Mullen, A. C., Gasink, C. R., Kaech, S. M., Miller, J. D., Gapin, L., Ryan, K., Russ, A. P., Lindsten, T., Orange, J. S., Goldrath, A. W., Ahmed, R., & Reiner, S. L. (2005). Effector and memory CD8+ T cell fate coupled by T-bet and eomesodermin. Nature Immunology, 6(12), 1236–1244. https://doi.org/10.1038/ni1268

    Article  CAS  PubMed  Google Scholar 

  64. Pearce, E. L., Mullen, A. C., Martins, G. A., Krawczyk, C. M., Hutchins, A. S., Zediak, V. P., Banica, M., DiCioccio, C. B., Gross, D. A., Mao, C. A., Shen, H., Cereb, N., Yang, S. Y., Lindsten, T., Rossant, J., Hunter, C. A., & Reiner, S. L. (2003). Control of effector CD8+ T cell function by the transcription factor Eomesodermin. Science, 302(5647), 1041–1043. https://doi.org/10.1126/science.1090148

    Article  CAS  PubMed  Google Scholar 

  65. Kemp, R. A., Backstrom, B. T., & Ronchese, F. (2005). The phenotype of type 1 and type 2 CD8+ T cells activated in vitro is affected by culture conditions and correlates with effector activity. Immunology, 115(3), 315–324. https://doi.org/10.1111/j.1365-2567.2005.02168.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Detich, N., Theberge, J., & Szyf, M. (2002). Promoter-specific activation and demethylation by MBD2/demethylase. Journal of Biological Chemistry, 277(39), 35791–35794. https://doi.org/10.1074/jbc.C200408200

    Article  CAS  PubMed  Google Scholar 

  67. Fitzpatrick, D. R., & Wilson, C. B. (2003). Methylation and demethylation in the regulation of genes, cells, and responses in the immune system. Clinical Immunology, 109(1), 37–45. https://doi.org/10.1016/s1521-6616(03)00205-5

    Article  CAS  PubMed  Google Scholar 

  68. Kersh, E. N., Fitzpatrick, D. R., Murali-Krishna, K., Shires, J., Speck, S. H., Boss, J. M., & Ahmed, R. (2006). Rapid demethylation of the IFN-gamma gene occurs in memory but not naive CD8 T cells. The Journal of Immunology, 176(7), 4083–4093. https://doi.org/10.4049/jimmunol.176.7.4083

    Article  CAS  PubMed  Google Scholar 

  69. Scharer, C. D., Barwick, B. G., Youngblood, B. A., Ahmed, R., & Boss, J. M. (2013). Global DNA methylation remodeling accompanies CD8 T cell effector function. The Journal of Immunology, 191(6), 3419–3429. https://doi.org/10.4049/jimmunol.1301395

    Article  CAS  PubMed  Google Scholar 

  70. Bochtler, M., Kolano, A., & Xu, G. L. (2017). DNA demethylation pathways: Additional players and regulators. BioEssays, 39(1), 1–13. https://doi.org/10.1002/bies.201600178

    Article  CAS  PubMed  Google Scholar 

  71. Fan, H., Zhang, H., Pascuzzi, P. E., & Andrisani, O. (2016). Hepatitis B virus X protein induces EpCAM expression via active DNA demethylation directed by RelA in complex with EZH2 and TET2. Oncogene, 35(6), 715–726. https://doi.org/10.1038/onc.2015.122

    Article  CAS  PubMed  Google Scholar 

  72. Chakraborty, A., & Viswanathan, P. (2018). Methylation-demethylation dynamics: Implications of changes in acute kidney injury. Analytical Cellular Pathology, 2018, 8764384. https://doi.org/10.1155/2018/8764384. Amsterdam.

    Article  CAS  Google Scholar 

  73. Weng, N. P., Araki, Y., & Subedi, K. (2012). The molecular basis of the memory T cell response: Differential gene expression and its epigenetic regulation. Nature Reviews Immunology, 12(4), 306–315. https://doi.org/10.1038/nri3173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Araki, Y., Fann, M., Wersto, R., & Weng, N. P. (2008). Histone acetylation facilitates rapid and robust memory CD8 T cell response through differential expression of effector molecules (eomesodermin and its targets: Perforin and granzyme B). The Journal of Immunology, 180(12), 8102–8108. https://doi.org/10.4049/jimmunol.180.12.8102

    Article  CAS  PubMed  Google Scholar 

  75. Rodriguez, R. M., Suarez-Alvarez, B., Lavin, J. L., Mosen-Ansorena, D., Baragano Raneros, A., Marquez-Kisinousky, L., Aransay, A. M., & Lopez-Larrea, C. (2017). Epigenetic networks regulate the transcriptional program in memory and terminally differentiated CD8+ T cells. The Journal of Immunology, 198(2), 937–949. https://doi.org/10.4049/jimmunol.1601102

    Article  CAS  PubMed  Google Scholar 

  76. Maltby, V. E., Graves, M. C., Lea, R. A., Benton, M. C., Sanders, K. A., Tajouri, L., Scott, R. J., & Lechner-Scott, J. (2015). Genome-wide DNA methylation profiling of CD8+ T cells shows a distinct epigenetic signature to CD4+ T cells in multiple sclerosis patients. Clinical Epigenetics, 7, 118. https://doi.org/10.1186/s13148-015-0152-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Vegran, F., Berger, H., Boidot, R., Mignot, G., Bruchard, M., Dosset, M., Chalmin, F., Rebe, C., Derangere, V., Ryffel, B., Kato, M., Prevost-Blondel, A., Ghiringhelli, F., & Apetoh, L. (2014). The transcription factor IRF1 dictates the IL-21-dependent anticancer functions of TH9 cells. Nature Immunology, 15(8), 758–766. https://doi.org/10.1038/ni.2925

    Article  CAS  PubMed  Google Scholar 

  78. Harrison, O. J., Linehan, J. L., Shih, H. Y., Bouladoux, N., Han, S. J., Smelkinson, M., Sen, S. K., Byrd, A. L., Enamorado, M., Yao, C., Tamoutounour, S., Van Laethem, F., Hurabielle, C., Collins, N., Paun, A., Salcedo, R., O’Shea, J. J., & Belkaid, Y. (2019). Commensal-specific T cell plasticity promotes rapid tissue adaptation to injury. Science, 363(6422). https://doi.org/10.1126/science.aat6280

  79. Srenathan, U., Steel, K., & Taams, L. S. (2016). IL-17+ CD8+ T cells: Differentiation, phenotype and role in inflammatory disease. Immunology Letters, 178, 20–26. https://doi.org/10.1016/j.imlet.2016.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Liu, Y., Yang, B., Ma, J., Wang, H., Huang, F., Zhang, J., Chen, H., & Wu, C. (2011). Interleukin-21 induces the differentiation of human Tc22 cells via phosphorylation of signal transducers and activators of transcription. Immunology, 132(4), 540–548. https://doi.org/10.1111/j.1365-2567.2010.03399.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Motz, G. T., & Coukos, G. (2011). The parallel lives of angiogenesis and immunosuppression: Cancer and other tales. Nature Reviews Immunology, 11(10), 702–711. https://doi.org/10.1038/nri3064

    Article  CAS  PubMed  Google Scholar 

  82. Fox, C. J., Hammerman, P. S., & Thompson, C. B. (2005). Fuel feeds function: Energy metabolism and the T-cell response. Nature Reviews Immunology, 5(11), 844–852. https://doi.org/10.1038/nri1710

    Article  CAS  PubMed  Google Scholar 

  83. Jones, R. G., & Thompson, C. B. (2007). Revving the engine: Signal transduction fuels T cell activation. Immunity, 27(2), 173–178. https://doi.org/10.1016/j.immuni.2007.07.008

    Article  CAS  PubMed  Google Scholar 

  84. Buckley, A. F., Kuo, C. T., & Leiden, J. M. (2001). Transcription factor LKLF is sufficient to program T cell quiescence via a c-Myc-dependent pathway. Nature Immunology, 2(8), 698–704. https://doi.org/10.1038/90633

    Article  CAS  PubMed  Google Scholar 

  85. Brand, K. A., & Hermfisse, U. (1997). Aerobic glycolysis by proliferating cells: A protective strategy against reactive oxygen species. The FASEB Journal, 11(5), 388–395. https://doi.org/10.1096/fasebj.11.5.9141507

    Article  CAS  PubMed  Google Scholar 

  86. Frauwirth, K. A., Riley, J. L., Harris, M. H., Parry, R. V., Rathmell, J. C., Plas, D. R., Elstrom, R. L., June, C. H., & Thompson, C. B. (2002). The CD28 signaling pathway regulates glucose metabolism. Immunity, 16(6), 769–777. https://doi.org/10.1016/s1074-7613(02)00323-0

    Article  CAS  PubMed  Google Scholar 

  87. Christofk, H. R., Vander Heiden, M. G., Harris, M. H., Ramanathan, A., Gerszten, R. E., Wei, R., Fleming, M. D., Schreiber, S. L., & Cantley, L. C. (2008). The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature, 452(7184), 230–233. https://doi.org/10.1038/nature06734

    Article  CAS  PubMed  Google Scholar 

  88. DeBerardinis, R. J., Mancuso, A., Daikhin, E., Nissim, I., Yudkoff, M., Wehrli, S., & Thompson, C. B. (2007). Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci U S A, 104(49), 19345–19350. https://doi.org/10.1073/pnas.0709747104

    Article  PubMed  PubMed Central  Google Scholar 

  89. Facciabene, A., Peng, X., Hagemann, I. S., Balint, K., Barchetti, A., Wang, L. P., Gimotty, P. A., Gilks, C. B., Lal, P., Zhang, L., & Coukos, G. (2011). Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells. Nature, 475(7355), 226–230. https://doi.org/10.1038/nature10169

    Article  CAS  PubMed  Google Scholar 

  90. Shimizu, J., Yamazaki, S., & Sakaguchi, S. (1999). Induction of tumor immunity by removing CD25+CD4+ T cells: A common basis between tumor immunity and autoimmunity. The Journal of Immunology, 163(10), 5211–5218. https://www.ncbi.nlm.nih.gov/pubmed/10553041

  91. Jiao, L., & Liu, X. (2015). Structural basis of histone H3K27 trimethylation by an active polycomb repressive complex 2. Science, 350(6258), aac4383. https://doi.org/10.1126/science.aac4383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. O’Carroll, D., Erhardt, S., Pagani, M., Barton, S. C., Surani, M. A., & Jenuwein, T. (2001). The polycomb-group gene Ezh2 is required for early mouse development. Molecular and Cellular Biology, 21(13), 4330–4336. https://doi.org/10.1128/MCB.21.13.4330-4336.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Su, I. H., Basavaraj, A., Krutchinsky, A. N., Hobert, O., Ullrich, A., Chait, B. T., & Tarakhovsky, A. (2003). Ezh2 controls B cell development through histone H3 methylation and Igh rearrangement. Nature Immunology, 4(2), 124–131. https://doi.org/10.1038/ni876

    Article  CAS  PubMed  Google Scholar 

  94. Neo, W. H., Lim, J. F., Grumont, R., Gerondakis, S., & Su, I. H. (2014). c-Rel regulates Ezh2 expression in activated lymphocytes and malignant lymphoid cells. Journal of Biological Chemistry, 289(46), 31693–31707. https://doi.org/10.1074/jbc.M114.574517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Cerboni, S., Jeremiah, N., Gentili, M., Gehrmann, U., Conrad, C., Stolzenberg, M. C., Picard, C., Neven, B., Fischer, A., Amigorena, S., Rieux-Laucat, F., & Manel, N. (2017). Intrinsic antiproliferative activity of the innate sensor STING in T lymphocytes. Journal of Experimental Medicine, 214(6), 1769–1785. https://doi.org/10.1084/jem.20161674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Luksch, H., Stinson, W. A., Platt, D. J., Qian, W., Kalugotla, G., Miner, C. A., Bennion, B. G., Gerbaulet, A., Rosen-Wolff, A., & Miner, J. J. (2019). STING-associated lung disease in mice relies on T cells but not type I interferon. Journal of Allergy and Clinical Immunology, 144(1), 254-266 e258. https://doi.org/10.1016/j.jaci.2019.01.044

    Article  CAS  PubMed  Google Scholar 

  97. Yao, H., Wang, S., Zhou, X., Sun, J., Zhou, G., Zhou, D., Chen, G., Shi, X., Chen, J., Shi, B., Tai, Q., Mi, X., Sun, L., Yao, Y., & He, S. (2022). STING promotes proliferation and induces drug resistance in colorectal cancer by regulating the AMPK-mTOR pathway. Journal of Gastrointestinal Oncology, 13(5), 2458–2471. https://doi.org/10.21037/jgo-22-957

  98. Domvri, K., Petanidis, S., Zarogoulidis, P., Anestakis, D., Tsavlis, D., Bai, C., Huang, H., Freitag, L., Hohenforst-Schmidt, W., Porpodis, K., & Katopodi, T. (2021). Treg-dependent immunosuppression triggers effector T cell dysfunction via the STING/ILC2 axis. Clinical Immunology, 222, 108620. https://doi.org/10.1016/j.clim.2020.108620

    Article  CAS  PubMed  Google Scholar 

  99. Wang, W., Kryczek, I., Dostal, L., Lin, H., Tan, L., Zhao, L., Lu, F., Wei, S., Maj, T., Peng, D., He, G., Vatan, L., Szeliga, W., Kuick, R., Kotarski, J., Tarkowski, R., Dou, Y., Rattan, R., Munkarah, A., & Zou, W. (2016). Effector T cells abrogate stroma-mediated chemoresistance in ovarian cancer. Cell, 165(5), 1092–1105. https://doi.org/10.1016/j.cell.2016.04.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Xu, S., Tao, Z., Hai, B., Liang, H., Shi, Y., Wang, T., Song, W., Chen, Y., OuYang, J., Chen, J., Kong, F., Dong, Y., Jiang, S. W., Li, W., Wang, P., Yuan, Z., Wan, X., Wang, C., Li, W., & Chen, K. (2016). miR-424(322) reverses chemoresistance via T-cell immune response activation by blocking the PD-L1 immune checkpoint. Nature Communications, 7, 11406. https://doi.org/10.1038/ncomms11406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhang, L. N., Xin, T., Chen, M., & Gao, P. (2019). Chemoresistance in mesenchymal lung cancer cells is correlated to high regulatory T cell presence in the tumor microenvironment. IUBMB Life, 71(7), 986–991. https://doi.org/10.1002/iub.2043

    Article  CAS  PubMed  Google Scholar 

  102. Fife, B. T., & Bluestone, J. A. (2008). Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways. Immunological Reviews, 224, 166–182. https://doi.org/10.1111/j.1600-065X.2008.00662.x

    Article  CAS  PubMed  Google Scholar 

  103. Intlekofer, A. M., & Thompson, C. B. (2013). At the bench: Preclinical rationale for CTLA-4 and PD-1 blockade as cancer immunotherapy. Journal of Leukocyte Biology, 94(1), 25–39. https://doi.org/10.1189/jlb.1212621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Jain, N., Nguyen, H., Chambers, C., & Kang, J. (2010). Dual function of CTLA-4 in regulatory T cells and conventional T cells to prevent multiorgan autoimmunity. Proceedings of the National Academy of Sciences of the United States of America, 107(4), 1524–1528. https://doi.org/10.1073/pnas.0910341107

    Article  PubMed  PubMed Central  Google Scholar 

  105. Takahashi, T., Tagami, T., Yamazaki, S., Uede, T., Shimizu, J., Sakaguchi, N., Mak, T. W., & Sakaguchi, S. (2000). Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. Journal of Experimental Medicine, 192(2), 303–310. https://doi.org/10.1084/jem.192.2.303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Walker, L. S. (2013). Treg and CTLA-4: Two intertwining pathways to immune tolerance. Journal of Autoimmunity, 45(100), 49–57. https://doi.org/10.1016/j.jaut.2013.06.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Friedline, R. H., Brown, D. S., Nguyen, H., Kornfeld, H., Lee, J., Zhang, Y., Appleby, M., Der, S. D., Kang, J., & Chambers, C. A. (2009). CD4+ regulatory T cells require CTLA-4 for the maintenance of systemic tolerance. Journal of Experimental Medicine, 206(2), 421–434. https://doi.org/10.1084/jem.20081811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Grosso, J. F., & Jure-Kunkel, M. N. (2013). CTLA-4 blockade in tumor models: An overview of preclinical and translational research. Cancer Immunity, 13, 5. https://www.ncbi.nlm.nih.gov/pubmed/23390376

  109. Ishida, Y., Agata, Y., Shibahara, K., & Honjo, T. (1992). Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO Journal, 11(11), 3887–3895. https://doi.org/10.1002/j.1460-2075.1992.tb05481.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Keir, M. E., Butte, M. J., Freeman, G. J., & Sharpe, A. H. (2008). PD-1 and its ligands in tolerance and immunity. Annual Review of Immunology, 26, 677–704. https://doi.org/10.1146/annurev.immunol.26.021607.090331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. He, Y. F., Zhang, G. M., Wang, X. H., Zhang, H., Yuan, Y., Li, D., & Feng, Z. H. (2004). Blocking programmed death-1 ligand-PD-1 interactions by local gene therapy results in enhancement of antitumor effect of secondary lymphoid tissue chemokine. The Journal of Immunology, 173(8), 4919–4928. https://doi.org/10.4049/jimmunol.173.8.4919

    Article  CAS  PubMed  Google Scholar 

  112. Hirano, F., Kaneko, K., Tamura, H., Dong, H., Wang, S., Ichikawa, M., Rietz, C., Flies, D. B., Lau, J. S., Zhu, G., Tamada, K., & Chen, L. (2005). Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity. Cancer Research, 65(3), 1089–1096. https://www.ncbi.nlm.nih.gov/pubmed/15705911

  113. Iwai, Y., Ishida, M., Tanaka, Y., Okazaki, T., Honjo, T., & Minato, N. (2002). Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci U S A, 99(19), 12293–12297. https://doi.org/10.1073/pnas.192461099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Iwai, Y., Terawaki, S., & Honjo, T. (2005). PD-1 blockade inhibits hematogenous spread of poorly immunogenic tumor cells by enhanced recruitment of effector T cells. International Immunology, 17(2), 133–144. https://doi.org/10.1093/intimm/dxh194

    Article  CAS  PubMed  Google Scholar 

  115. Foster, R., Buckanovich, R. J., & Rueda, B. R. (2013). Ovarian cancer stem cells: Working towards the root of stemness. Cancer Letters, 338(1), 147–157. https://doi.org/10.1016/j.canlet.2012.10.023

    Article  CAS  PubMed  Google Scholar 

  116. Dunn, G. P., Bruce, A. T., Ikeda, H., Old, L. J., & Schreiber, R. D. (2002). Cancer immunoediting: From immunosurveillance to tumor escape. Nature Immunology, 3(11), 991–998. https://doi.org/10.1038/ni1102-991

    Article  CAS  PubMed  Google Scholar 

  117. Teng, M. W., Galon, J., Fridman, W. H., & Smyth, M. J. (2015). From mice to humans: Developments in cancer immunoediting. The Journal of Clinical Investigation, 125(9), 3338–3346. https://doi.org/10.1172/JCI80004

    Article  PubMed  PubMed Central  Google Scholar 

  118. McGranahan, N., Rosenthal, R., Hiley, C. T., Rowan, A. J., Watkins, T. B. K., Wilson, G. A., Birkbak, N. J., Veeriah, S., Van Loo, P., Herrero, J., Swanton, C., & Consortium, T. R. (2017). Allele-specific HLA loss and immune escape in lung cancer evolution. Cell, 171(6), 1259–1271 e1211. https://doi.org/10.1016/j.cell.2017.10.001

  119. Sade-Feldman, M., Jiao, Y. J., Chen, J. H., Rooney, M. S., Barzily-Rokni, M., Eliane, J. P., Bjorgaard, S. L., Hammond, M. R., Vitzthum, H., Blackmon, S. M., Frederick, D. T., Hazar-Rethinam, M., Nadres, B. A., Van Seventer, E. E., Shukla, S. A., Yizhak, K., Ray, J. P., Rosebrock, D., Livitz, D., & Hacohen, N. (2017). Resistance to checkpoint blockade therapy through inactivation of antigen presentation. Nature Communications, 8(1), 1136. https://doi.org/10.1038/s41467-017-01062-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Saleh, R., & Elkord, E. (2020). Acquired resistance to cancer immunotherapy: Role of tumor-mediated immunosuppression. Seminars in Cancer Biology, 65, 13–27. https://doi.org/10.1016/j.semcancer.2019.07.017

    Article  CAS  PubMed  Google Scholar 

  121. Taylor, A., Verhagen, J., Blaser, K., Akdis, M., & Akdis, C. A. (2006). Mechanisms of immune suppression by interleukin-10 and transforming growth factor-beta: The role of T regulatory cells. Immunology, 117(4), 433–442. https://doi.org/10.1111/j.1365-2567.2006.02321.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Voron, T., Marcheteau, E., Pernot, S., Colussi, O., Tartour, E., Taieb, J., & Terme, M. (2014). Control of the immune response by pro-angiogenic factors. Frontiers in Oncology, 4, 70. https://doi.org/10.3389/fonc.2014.00070

    Article  PubMed  PubMed Central  Google Scholar 

  123. Schatton, T., Schutte, U., Frank, N. Y., Zhan, Q., Hoerning, A., Robles, S. C., Zhou, J., Hodi, F. S., Spagnoli, G. C., Murphy, G. F., & Frank, M. H. (2010). Modulation of T-cell activation by malignant melanoma initiating cells. Cancer Research, 70(2), 697–708. https://doi.org/10.1158/0008-5472.CAN-09-1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Luo, N., Nixon, M. J., Gonzalez-Ericsson, P. I., Sanchez, V., Opalenik, S. R., Li, H., Zahnow, C. A., Nickels, M. L., Liu, F., Tantawy, M. N., Sanders, M. E., Manning, H. C., & Balko, J. M. (2018). DNA methyltransferase inhibition upregulates MHC-I to potentiate cytotoxic T lymphocyte responses in breast cancer. Nature Communications, 9(1), 248. https://doi.org/10.1038/s41467-017-02630-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wylie, B., Chee, J., Forbes, C. A., Booth, M., Stone, S. R., Buzzai, A., Abad, A., Foley, B., Cruickshank, M. N., & Waithman, J. (2019). Acquired resistance during adoptive cell therapy by transcriptional silencing of immunogenic antigens. Oncoimmunology, 8(8), 1609874. https://doi.org/10.1080/2162402X.2019.1609874

    Article  PubMed  PubMed Central  Google Scholar 

  126. Burr, M. L., Sparbier, C. E., Chan, K. L., Chan, Y. C., Kersbergen, A., Lam, E. Y. N., Azidis-Yates, E., Vassiliadis, D., Bell, C. C., Gilan, O., Jackson, S., Tan, L., Wong, S. Q., Hollizeck, S., Michalak, E. M., Siddle, H. V., McCabe, M. T., Prinjha, R. K., Guerra, G. R., & Dawson, M. A. (2019). An evolutionarily conserved function of polycomb silences the MHC class I antigen presentation pathway and enables immune evasion in cancer. Cancer Cell, 36(4), 385-401 e388. https://doi.org/10.1016/j.ccell.2019.08.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Siebenkas, C., Chiappinelli, K. B., Guzzetta, A. A., Sharma, A., Jeschke, J., Vatapalli, R., Baylin, S. B., & Ahuja, N. (2017). Inhibiting DNA methylation activates cancer testis antigens and expression of the antigen processing and presentation machinery in colon and ovarian cancer cells. PLoS ONE, 12(6), e0179501. https://doi.org/10.1371/journal.pone.0179501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Gameiro, S. R., Malamas, A. S., Tsang, K. Y., Ferrone, S., & Hodge, J. W. (2016). Inhibitors of histone deacetylase 1 reverse the immune evasion phenotype to enhance T-cell mediated lysis of prostate and breast carcinoma cells. Oncotarget, 7(7), 7390–7402. https://doi.org/10.18632/oncotarget.7180

  129. Lo Re, O., Mazza, T., Giallongo, S., Sanna, P., Rappa, F., Vinh Luong, T., Li Volti, G., Drovakova, A., Roskams, T., Van Haele, M., Tsochatzis, E., & Vinciguerra, M. (2020). Loss of histone macroH2A1 in hepatocellular carcinoma cells promotes paracrine-mediated chemoresistance and CD4(+)CD25(+)FoxP3(+) regulatory T cells activation. Theranostics, 10(2), 910–924. https://doi.org/10.7150/thno.35045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Mazzone, R., Zwergel, C., Mai, A., & Valente, S. (2017). Epi-drugs in combination with immunotherapy: A new avenue to improve anticancer efficacy. Clinical Epigenetics, 9, 59. https://doi.org/10.1186/s13148-017-0358-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Grinberg-Bleyer, Y., Oh, H., Desrichard, A., Bhatt, D. M., Caron, R., Chan, T. A., Schmid, R. M., Klein, U., Hayden, M. S., & Ghosh, S. (2017). NF-kappaB c-Rel is crucial for the regulatory T cell immune checkpoint in cancer. Cell, 170(6), 1096-1108 e1013. https://doi.org/10.1016/j.cell.2017.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Xiao, G., Jin, L. L., Liu, C. Q., Wang, Y. C., Meng, Y. M., Zhou, Z. G., Chen, J., Yu, X. J., Zhang, Y. J., Xu, J., & Zheng, L. (2019). EZH2 negatively regulates PD-L1 expression in hepatocellular carcinoma. Journal for Immunotherapy of Cancer, 7(1), 300. https://doi.org/10.1186/s40425-019-0784-9

    Article  PubMed  PubMed Central  Google Scholar 

  133. Wang, D., Quiros, J., Mahuron, K., Pai, C. C., Ranzani, V., Young, A., Silveria, S., Harwin, T., Abnousian, A., Pagani, M., Rosenblum, M. D., Van Gool, F., Fong, L., Bluestone, J. A., & DuPage, M. (2018). Targeting EZH2 reprograms intratumoral regulatory T cells to enhance cancer immunity. Cell Reports, 23(11), 3262–3274. https://doi.org/10.1016/j.celrep.2018.05.050

    Article  CAS  PubMed  Google Scholar 

  134. Goswami, S., Apostolou, I., Zhang, J., Skepner, J., Anandhan, S., Zhang, X., Xiong, L., Trojer, P., Aparicio, A., Subudhi, S. K., Allison, J. P., Zhao, H., & Sharma, P. (2018). Modulation of EZH2 expression in T cells improves efficacy of anti-CTLA-4 therapy. The Journal of Clinical Investigation, 128(9), 3813–3818. https://doi.org/10.1172/JCI99760

    Article  PubMed  PubMed Central  Google Scholar 

  135. DuPage, M., Chopra, G., Quiros, J., Rosenthal, W. L., Morar, M. M., Holohan, D., Zhang, R., Turka, L., Marson, A., & Bluestone, J. A. (2015). The chromatin-modifying enzyme Ezh2 is critical for the maintenance of regulatory T cell identity after activation. Immunity, 42(2), 227–238. https://doi.org/10.1016/j.immuni.2015.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Woo, E. Y., Chu, C. S., Goletz, T. J., Schlienger, K., Yeh, H., Coukos, G., Rubin, S. C., Kaiser, L. R., & June, C. H. (2001). Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Research, 61(12), 4766–4772. https://www.ncbi.nlm.nih.gov/pubmed/11406550

  137. Li, X., Xing, J., Wang, H., & Yu, E. (2019). The SLC34A2-ROS-HIF-1-induced up-regulation of EZH2 expression promotes proliferation and chemo-resistance to apoptosis in colorectal cancer. Bioscience Reports, 39(5). 10.1042/BSR20180268

  138. Yang, Q., Zhao, S., Shi, Z., Cao, L., Liu, J., Pan, T., Zhou, D., & Zhang, J. (2021). Chemotherapy-elicited exosomal miR-378a-3p and miR-378d promote breast cancer stemness and chemoresistance via the activation of EZH2/STAT3 signaling. Journal of Experimental & Clinical Cancer Research, 40(1), 120. https://doi.org/10.1186/s13046-021-01901-1

    Article  CAS  Google Scholar 

  139. Gardner, E. E., Lok, B. H., Schneeberger, V. E., Desmeules, P., Miles, L. A., Arnold, P. K., Ni, A., Khodos, I., de Stanchina, E., Nguyen, T., Sage, J., Campbell, J. E., Ribich, S., Rekhtman, N., Dowlati, A., Massion, P. P., Rudin, C. M., & Poirier, J. T. (2017). Chemosensitive relapse in small cell lung cancer proceeds through an EZH2-SLFN11 axis. Cancer Cell, 31(2), 286–299. https://doi.org/10.1016/j.ccell.2017.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Zhan, J., Wang, P., Li, S., Song, J., He, H., Wang, Y., Liu, Z., Wang, F., Bai, H., Fang, W., Du, Q., Ye, M., Chang, Z., Wang, J., & Zhang, H. (2019). HOXB13 networking with ABCG1/EZH2/Slug mediates metastasis and confers resistance to cisplatin in lung adenocarcinoma patients. Theranostics, 9(7), 2084–2099. https://doi.org/10.7150/thno.29463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Chen, X., Xie, R., Gu, P., Huang, M., Han, J., Dong, W., Xie, W., Wang, B., He, W., Zhong, G., Chen, Z., Huang, J., & Lin, T. (2019). Long noncoding RNA LBCS inhibits self-renewal and chemoresistance of bladder cancer stem cells through epigenetic silencing of SOX2. Clinical Cancer Research, 25(4), 1389–1403. https://doi.org/10.1158/1078-0432.CCR-18-1656

    Article  CAS  PubMed  Google Scholar 

  142. Wang, C., Li, X., Zhang, J., Ge, Z., Chen, H., & Hu, J. (2018). EZH2 contributes to 5-FU resistance in gastric cancer by epigenetically suppressing FBXO32 expression. Oncotargets and Therapy, 11, 7853–7864. https://doi.org/10.2147/OTT.S180131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Ye, K., & Wang, Y. (2022). Long non-coding RNA ZNF674-AS1 antagonizes oxaliplatin resistance of gastric cancer via regulating EZH2-mediated methylation of CHST7. Aging (Albany NY), 14(13), 5523–5536. https://doi.org/10.18632/aging.204165

  144. Zhou, J., Che, J., Xu, L., Yang, W., Li, Y., Zhou, W., & Zou, S. (2022). Enhancer of zeste homolog 2 promotes hepatocellular cancer progression and chemoresistance by enhancing protein kinase B activation through microRNA-381-mediated SET domain bifurcated 1. Bioengineered, 13(3), 5737–5755. https://doi.org/10.1080/21655979.2021.2023792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Yang, L. H., Du, P., Liu, W., An, L. K., Li, J., Zhu, W. Y., Yuan, S., Wang, L., & Zang, L. (2021). LncRNA ANRIL promotes multiple myeloma progression and bortezomib resistance by EZH2-mediated epigenetically silencing of PTEN. Neoplasma, 68(4), 788–797. https://doi.org/10.4149/neo_2021_210205N184

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Basic and Applied Research in Biophysics and Material Science (RSI 4002) by the Department of Atomic Energy (DAE), S. Ramachandran National Bioscience Award for Career Development 2019 (BT/HRD-NBA-NWB/38/2019-20), Department of Biotechnology, and SwarnaJayanti Fellowship (DST/SJF/LSA-02/2017-18), Department of Science and Technology, Govt. of India to C. D.

Author information

Authors and Affiliations

Authors

Contributions

C. D. proposed the review topic. C. D., V. S., S. N., A. G., and S. M. wrote the main manuscript and S. A. and S. R. prepared Figs. 1, 2, and 3. All authors reviewed the manuscript and approved the final version for submission.

Corresponding author

Correspondence to Chandrima Das.

Ethics declarations

Ethical approval

The authors have adhered to all pertinent ethical standards while drafting this manuscript. They have taken all required measures to guarantee the precision and comprehensiveness of the provided information.

Informed consent

N/A.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, V., Nandi, S., Ghosh, A. et al. Epigenetic reprogramming of T cells: unlocking new avenues for cancer immunotherapy. Cancer Metastasis Rev 43, 175–195 (2024). https://doi.org/10.1007/s10555-024-10167-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-024-10167-w

Keywords

Navigation