Skip to main content

Advertisement

Log in

The role of cancer cell bioenergetics in dormancy and drug resistance

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

While anti-cancer drug treatments are often effective for the clinical management of cancer, these treatments frequently leave behind drug-tolerant persister cancer cells that can ultimately give rise to recurrent disease. Such persistent cancer cells can lie dormant for extended periods of time, going undetected by conventional clinical means. Understanding the mechanisms that such dormant cancer cells use to survive, and the mechanisms that drive emergence from dormancy, is critical to the development of improved therapeutic strategies to prevent and manage disease recurrence. Cancer cells often exhibit metabolic alterations compared to their non-transformed counterparts. An emerging body of evidence supports the notion that dormant cancer cells also have unique metabolic adaptations that may offer therapeutically targetable vulnerabilities. Herein, we review mechanisms through which cancer cells metabolically adapt to persist during drug treatments and develop drug resistance. We also highlight emerging therapeutic strategies to target dormant cancer cells via their metabolic features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Vallette, F. M., Olivier, C., Lézot, F., Oliver, L., Cochonneau, D., Lalier, L., Cartron, P.-F., & Heymann, D. (2019). Dormant, quiescent, tolerant and persister cells: Four synonyms for the same target in cancer. Biochemical Pharmacology, 162, 169–176. https://doi.org/10.1016/j.bcp.2018.11.004

    Article  CAS  PubMed  Google Scholar 

  2. Aguirre-Ghiso, J. A. (2007). Models, mechanisms and clinical evidence for cancer dormancy. Nature Reviews Cancer, 7(11), 834–846. https://doi.org/10.1038/nrc2256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sosa, M. S., Bragado, P., & Aguirre-Ghiso, J. A. (2014). Mechanisms of disseminated cancer cell dormancy: an awakening field. Nature Reviews Cancer, 14(9), 611–622. https://doi.org/10.1038/nrc3793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Roesch, A., Vultur, A., Bogeski, I., Wang, H., Zimmermann, K. M., Speicher, D., Körbel, C., Laschke, M. W., Gimotty, P. A., Philipp, S. E., et al. (2013). Overcoming intrinsic multidrug resistance in melanoma by blocking the mitochondrial respiratory chain of slow-cycling JARID1B(high) cells. Cancer Cell, 23(6), 811–825. https://doi.org/10.1016/j.ccr.2013.05.003

    Article  CAS  PubMed  Google Scholar 

  5. Jin, X., Demere, Z., Nair, K., Ali, A., Ferraro, G. B., Natoli, T., Deik, A., Petronio, L., Tang, A. A., Zhu, C., et al. (2020). A metastasis map of human cancer cell lines. Nature, 588(7837), 331–336. https://doi.org/10.1038/s41586-020-2969-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ward, P. S., & Thompson, C. B. (2012). Metabolic reprogramming: A cancer hallmark even warburg did not anticipate. Cancer Cell, 21(3), 297–308. https://doi.org/10.1016/j.ccr.2012.02.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. DeBerardinis, R. J., Lum, J. J., Hatzivassiliou, G., & Thompson, C. B. (2008). The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation. Cell Metabolism, 7(1), 11–20. https://doi.org/10.1016/j.cmet.2007.10.002

    Article  CAS  PubMed  Google Scholar 

  8. DeNicola, G. M., & Cantley, L. C. (2015). Cancer’s fuel choice: New flavors for a picky eater. Molecular cell, 60(4), 514–523. https://doi.org/10.1016/j.molcel.2015.10.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Reinfeld, B. I., Madden, M. Z., Wolf, M. M., Chytil, A., Bader, J. E., Patterson, A. R., Sugiura, A., Cohen, A. S., Ali, A., Do, B. T., et al. (2021). Cell-programmed nutrient partitioning in the tumour microenvironment. Nature, 593(7858), 282–288. https://doi.org/10.1038/s41586-021-03442-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lum, J. J., Bauer, D. E., Kong, M., Harris, M. H., Li, C., Lindsten, T., & Thompson, C. B. (2005). Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell, 120(2), 237–248. https://doi.org/10.1016/j.cell.2004.11.046

    Article  CAS  PubMed  Google Scholar 

  11. Vander Heiden, M. G., Cantley, L. C., & Thompson, C. B. (2009). Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science, 324(5930), 1029–1033. https://doi.org/10.1126/science.1160809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Endo, H., Okuyama, H., Ohue, M., & Inoue, M. (2014). Dormancy of cancer cells with suppression of AKT activity contributes to survival in chronic hypoxia. PLOS ONE, 9(6), e98858. https://doi.org/10.1371/journal.pone.0098858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Assaily, W., Rubinger, D. A., Wheaton, K., Lin, Y., Ma, W., Xuan, W., Brown-Endres, L., Tsuchihara, K., Mak, T. W., & Benchimol, S. (2011). ROS-mediated p53 induction of Lpin1 regulates fatty acid oxidation in response to nutritional stress. Molecular Cell, 44(3), 491–501. https://doi.org/10.1016/j.molcel.2011.08.038

    Article  CAS  PubMed  Google Scholar 

  14. Zaugg, K., Yao, Y., Reilly, P. T., Kannan, K., Kiarash, R., Mason, J., Huang, P., Sawyer, S. K., Fuerth, B., Faubert, B., et al. (2011). Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress. Genes & Development, 25(10), 1041–1051. https://doi.org/10.1101/gad.1987211

    Article  CAS  Google Scholar 

  15. Wang, C., Li, Z., Lu, Y., Du, R., Katiyar, S., Yang, J., Fu, M., Leader, J. E., Quong, A., Novikoff, P. M., et al. (2006). Cyclin D1 repression of nuclear respiratory factor 1 integrates nuclear DNA synthesis and mitochondrial function. Proceedings of the National Academy of Sciences, 103(31), 11567–11572. https://doi.org/10.1073/pnas.0603363103

    Article  CAS  Google Scholar 

  16. Lopez-Mejia, I. C., Lagarrigue, S., Giralt, A., Martinez-Carreres, L., Zanou, N., Denechaud, P.-D., Castillo-Armengol, J., Chavey, C., Orpinell, M., Delacuisine, B., et al. (2017). CDK4 phosphorylates AMPKα2 to inhibit its activity and repress fatty acid oxidation. Molecular Cell, 68(2), 336–349.e6. https://doi.org/10.1016/j.molcel.2017.09.034

    Article  CAS  PubMed  Google Scholar 

  17. Toyama, E. Q., Herzig, S., Courchet, J., Lewis, T. L., Losón, O. C., Hellberg, K., Young, N. P., Chen, H., Polleux, F., Chan, D. C., et al. (2016). AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science, 351(6270), 275–281. https://doi.org/10.1126/science.aab4138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Camarda, R., Zhou, A. Y., Kohnz, R. A., Balakrishnan, S., Mahieu, C., Anderton, B., Eyob, H., Kajimura, S., Tward, A., Krings, G., et al. (2016). Inhibition of fatty acid oxidation as a therapy for MYC-overexpressing triple-negative breast cancer. Nature Medicine, 22(4), 427–432. https://doi.org/10.1038/nm.4055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Madak-Erdogan, Z., Band, S., Zhao, Y. C., Smith, B. P., Kulkoyluoglu-Cotul, E., Zuo, Q., Santaliz Casiano, A., Wrobel, K., Rossi, G., Smith, R. L., et al. (2019). Free fatty acids rewire cancer metabolism in obesity-associated breast cancer via estrogen receptor and mTOR signaling. Cancer Research, canres.2849.2018. https://doi.org/10.1158/0008-5472.CAN-18-2849

  20. Havas, K. M., Milchevskaya, V., Radic, K., Alladin, A., Kafkia, E., Garcia, M., Stolte, J., Klaus, B., Rotmensz, N., Gibson, T. J., et al. (2017). Metabolic shifts in residual breast cancer drive tumor recurrence. Journal of Clinical Investigation, 127(6), 2091–2105. https://doi.org/10.1172/JCI89914

    Article  PubMed  PubMed Central  Google Scholar 

  21. Fox, D. B., Garcia, N. M. G., McKinney, B. J., Lupo, R., Noteware, L. C., Newcomb, R., Liu, J., Locasale, J. W., Hirschey, M. D., & Alvarez, J. V. (2020). NRF2 activation promotes the recurrence of dormant tumour cells through regulation of redox and nucleotide metabolism. Nature Metabolism, 2(4), 318–334. https://doi.org/10.1038/s42255-020-0191-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shen, S., Faouzi, S., Souquere, S., Roy, S., Routier, E., Libenciuc, C., André, F., Pierron, G., Scoazec, J.-Y., & Robert, C. (2020). Melanoma persister cells are tolerant to BRAF/MEK inhibitors via ACOX1-mediated fatty acid oxidation. Cell Reports, 33(8), 108421. https://doi.org/10.1016/j.celrep.2020.108421

    Article  CAS  PubMed  Google Scholar 

  23. Hampsch, R. A., Wells, J. D., Traphagen, N. A., McCleery, C. F., Fields, J. L., Shee, K., Dillon, L. M., Pooler, D. B., Lewis, L. D., Demidenko, E., et al. (2020). ampk activation by metformin promotes survival of dormant ER + breast cancer cells. Clinical Cancer Research, 26(14), 3707–3719. https://doi.org/10.1158/1078-0432.CCR-20-0269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Luo, Z., Zang, M., & Guo, W. (2010). AMPK as a metabolic tumor suppressor: control of metabolism and cell growth. Future Oncology, 6(3), 457–470. https://doi.org/10.2217/fon.09.174

    Article  CAS  PubMed  Google Scholar 

  25. Li, Y., Liang, R., Sun, M., Li, Z., Sheng, H., Wang, J., Xu, P., Liu, S., Yang, W., Lu, B., et al. (2020). AMPK-dependent phosphorylation of HDAC8 triggers PGM1 expression to promote lung cancer cell survival under glucose starvation. Cancer Letters, 478, 82–92. https://doi.org/10.1016/j.canlet.2020.03.007

    Article  CAS  PubMed  Google Scholar 

  26. Naik, P. P., Mukhopadhyay, S., Praharaj, P. P., Bhol, C. S., Panigrahi, D. P., Mahapatra, K. K., Patra, S., Saha, S., Panda, A. K., Panda, K., et al. (2021). Secretory clusterin promotes oral cancer cell survival via inhibiting apoptosis by activation of autophagy in AMPK/mTOR/ULK1 dependent pathway. Life Sciences, 264, 118722. https://doi.org/10.1016/j.lfs.2020.118722

    Article  CAS  PubMed  Google Scholar 

  27. Ferretti, A. C., Tonucci, F. M., Hidalgo, F., Almada, E., Larocca, M. C., & Favre, C. (2016). AMPK and PKA interaction in the regulation of survival of liver cancer cells subjected to glucose starvation. Oncotarget, 7(14), 17815–17828. https://doi.org/10.18632/oncotarget.7404

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chaube, B., Malvi, P., Singh, S. V., Mohammad, N., Viollet, B., & Bhat, M. K. (2015). AMPK maintains energy homeostasis and survival in cancer cells via regulating p38/PGC-1α-mediated mitochondrial biogenesis. Cell Death Discovery, 1(1), 1–11. https://doi.org/10.1038/cddiscovery.2015.63

    Article  CAS  Google Scholar 

  29. Peart, T., Valdes, Y. R., Correa, R. J. M., Fazio, E., Bertrand, M., McGee, J., Préfontaine, M., Sugimoto, A., DiMattia, G. E., & Shepherd, T. G. (2015). Intact LKB1 activity is required for survival of dormant ovarian cancer spheroids. Oncotarget, 6(26), 22424–22438.

    Article  PubMed  PubMed Central  Google Scholar 

  30. You, B., Xia, T., Gu, M., Zhang, Z., Zhang, Q., Shen, J., Fan, Y., Yao, H., Pan, S., Lu, Y., et al. (2022). AMPK–mTOR–mediated activation of autophagy promotes formation of dormant polyploid giant cancer cells. Cancer Research, 82(5), 846–858. https://doi.org/10.1158/0008-5472.CAN-21-2342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lu, Z., Luo, R. Z., Lu, Y., Zhang, X., Yu, Q., Khare, S., Kondo, S., Kondo, Y., Yu, Y., Mills, G. B., et al. (2008). The tumor suppressor gene ARHI regulates autophagy and tumor dormancy in human ovarian cancer cells. The Journal of Clinical Investigation, 118(12), 3917–3929. https://doi.org/10.1172/JCI35512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kim, S. M., Nguyen, T. T., Ravi, A., Kubiniok, P., Finicle, B. T., Jayashankar, V., Malacrida, L., Hou, J., Robertson, J., Gao, D., et al. (2018). PTEN deficiency and AMPK activation promote nutrient scavenging and anabolism in prostate cancer cells. Cancer Discovery, 8(7), 866–883. https://doi.org/10.1158/2159-8290.CD-17-1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Glatz, J. F. C., & Luiken, J. J. F. P. (2020). Time for a détente in the war on the mechanism of cellular fatty acid uptake. Journal of Lipid Research, 61(9), 1300–1303. https://doi.org/10.1194/jlr.6192020LTE

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ladanyi, A., Mukherjee, A., Kenny, H. A., Johnson, A., Mitra, A. K., Sundaresan, S., Nieman, K. M., Pascual, G., Benitah, S. A., Montag, A., et al. (2018). Adipocyte-induced CD36 expression drives ovarian cancer progression and metastasis. Oncogene, 37(17), 2285–2301. https://doi.org/10.1038/s41388-017-0093-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhao, J., Zhi, Z., Wang, C., Xing, H., Song, G., Yu, X., Zhu, Y., Wang, X., Zhang, X., & Di, Y. (2017). Exogenous lipids promote the growth of breast cancer cells via CD36. Oncology Reports, 38(4), 2105–2115. https://doi.org/10.3892/or.2017.5864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Drury, J., Rychahou, P. G., He, D., Jafari, N., Wang, C., Lee, E. Y., Weiss, H. L., Evers, B. M., & Zaytseva, Y. Y. (2020). Inhibition of fatty acid synthase upregulates expression of cd36 to sustain proliferation of colorectal cancer cells. Frontiers in Oncology, 10 Retrieved from https://www.frontiersin.org/article/10.3389/fonc.2020.01185

  37. Farge, T., Saland, E., de Toni, F., Aroua, N., Hosseini, M., Perry, R., Bosc, C., Sugita, M., Stuani, L., Fraisse, M., et al. (2017). Chemotherapy-resistant human acute myeloid leukemia cells are not enriched for leukemic stem cells but require oxidative metabolism. Cancer Discovery, 7(7), 716–735. https://doi.org/10.1158/2159-8290.CD-16-0441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pascual, G., Avgustinova, A., Mejetta, S., Martín, M., Castellanos, A., Attolini, C. S.-O., Berenguer, A., Prats, N., Toll, A., Hueto, J. A., et al. (2017). Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature, 541(7635), 41–45. https://doi.org/10.1038/nature20791

    Article  CAS  PubMed  Google Scholar 

  39. Landberg, N., von Palffy, S., Askmyr, M., Lilljebjörn, H., Sandén, C., Rissler, M., Mustjoki, S., Hjorth-Hansen, H., Richter, J., Ågerstam, H., et al. (2018). CD36 defines primitive chronic myeloid leukemia cells less responsive to imatinib but vulnerable to antibody-based therapeutic targeting. Haematologica, 103(3), 447–455. https://doi.org/10.3324/haematol.2017.169946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Aloia, A., Müllhaupt, D., Chabbert, C. D., Eberhart, T., Flückiger-Mangual, S., Vukolic, A., Eichhoff, O., Irmisch, A., Alexander, L. T., Scibona, E., et al. (2019). A fatty acid oxidation-dependent metabolic shift regulates the adaptation of BRAF-mutated melanoma to MAPK inhibitors. Clinical Cancer Research, 25(22), 6852–6867. https://doi.org/10.1158/1078-0432.CCR-19-0253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Park, J. H., Vithayathil, S., Kumar, S., Sung, P.-L., Dobrolecki, L. E., Putluri, V., Bhat, V. B., Bhowmik, S. K., Gupta, V., Arora, K., et al. (2016). Fatty acid oxidation-driven Src links mitochondrial energy reprogramming and oncogenic properties in triple-negative breast cancer. Cell Reports, 14(9), 2154–2165. https://doi.org/10.1016/j.celrep.2016.02.004

    Article  CAS  PubMed  Google Scholar 

  42. Liang, H., & Ward, W. F. (2006). PGC-1alpha: A key regulator of energy metabolism. Advances in Physiology Education, 30(4), 145–151. https://doi.org/10.1152/advan.00052.2006

    Article  PubMed  Google Scholar 

  43. Ying, H., Kimmelman, A. C., Lyssiotis, C. A., Hua, S., Chu, G. C., Fletcher-Sananikone, E., Locasale, J. W., Son, J., Zhang, H., Coloff, J. L., et al. (2012). Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell, 149(3), 656–670. https://doi.org/10.1016/j.cell.2012.01.058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bosc, C., Saland, E., Bousard, A., Gadaud, N., Sabatier, M., Cognet, G., Farge, T., Boet, E., Gotanègre, M., Aroua, N., et al. (2021). Mitochondrial inhibitors circumvent adaptive resistance to venetoclax and cytarabine combination therapy in acute myeloid leukemia. Nature Cancer, 2(11), 1204–1223. https://doi.org/10.1038/s43018-021-00264-y

    Article  CAS  PubMed  Google Scholar 

  45. Henkenius, K., Greene, B. H., Barckhausen, C., Hartmann, R., Märken, M., Kaiser, T., Rehberger, M., Metzelder, S. K., Parak, W. J., Neubauer, A., et al. (2017). Maintenance of cellular respiration indicates drug resistance in acute myeloid leukemia. Leukemia Research, 62, 56–63. https://doi.org/10.1016/j.leukres.2017.09.021

    Article  CAS  PubMed  Google Scholar 

  46. Echeverria, G. V., Ge, Z., Seth, S., Zhang, X., Jeter-Jones, S., Zhou, X., Cai, S., Tu, Y., McCoy, A., Peoples, M., et al. (2019). Resistance to neoadjuvant chemotherapy in triple-negative breast cancer mediated by a reversible drug-tolerant state. Science Translational Medicine, 11(488), 936. https://doi.org/10.1126/scitranslmed.aav0936

    Article  CAS  Google Scholar 

  47. Lee, K., Giltnane, J. M., Balko, J. M., Schwarz, L. J., Guerrero-Zotano, A. L., Hutchinson, K. E., Nixon, M. J., Estrada, M. V., Sánchez, V., Sanders, M. E., et al. (2017). MYC and MCL1 cooperatively promote chemotherapy-resistant breast cancer stem cells via regulation of mitochondrial oxidative phosphorylation. Cell Metabolism, 26(4), 633–647.e7. https://doi.org/10.1016/j.cmet.2017.09.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Buschhaus, J. M., Humphries, B. A., Eckley, S. S., Robison, T. H., Cutter, A. C., Rajendran, S., Haley, H. R., Bevoor, A. S., Luker, K. E., & Luker, G. D. (2020). Targeting disseminated estrogen-receptor-positive breast cancer cells in bone marrow. Oncogene, 39(34), 5649–5662. https://doi.org/10.1038/s41388-020-01391-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Franco, J., Balaji, U., Freinkman, E., Witkiewicz, A. K., & Knudsen, E. S. (2016). Metabolic reprogramming of pancreatic cancer mediated by CDK4/6 inhibition elicits unique vulnerabilities. Cell Reports, 14(5), 979–990. https://doi.org/10.1016/j.celrep.2015.12.094

    Article  CAS  PubMed  Google Scholar 

  50. Kunimasa, K., Nagano, T., Shimono, Y., Dokuni, R., Kiriu, T., Tokunaga, S., Tamura, D., Yamamoto, M., Tachihara, M., Kobayashi, K., et al. (2017). Glucose metabolism-targeted therapy and withaferin A are effective for epidermal growth factor receptor tyrosine kinase inhibitor-induced drug-tolerant persisters. Cancer Science, 108(7), 1368–1377. https://doi.org/10.1111/cas.13266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dörr, J. R., Yu, Y., Milanovic, M., Beuster, G., Zasada, C., Däbritz, J. H. M., Lisec, J., Lenze, D., Gerhardt, A., Schleicher, K., et al. (2013). Synthetic lethal metabolic targeting of cellular senescence in cancer therapy. Nature, 501(7467), 421–425. https://doi.org/10.1038/nature12437

    Article  CAS  PubMed  Google Scholar 

  52. Goldman, A., Khiste, S., Freinkman, E., Dhawan, A., Majumder, B., Mondal, J., Pinkerton, A. B., Eton, E., Medhi, R., Chandrasekar, V., et al. (2019). Targeting tumor phenotypic plasticity and metabolic remodeling in adaptive cross-drug tolerance. Science Signaling, 12(595), eaas8779. https://doi.org/10.1126/scisignal.aas8779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang, W. C., Wells, J. M., Chow, K.-H., Huang, H., Yuan, M., Saxena, T., Melnick, M. A., Politi, K., Asara, J. M., Costa, D. B., et al. (2019). miR-147b-mediated TCA cycle dysfunction and pseudohypoxia initiate drug tolerance to EGFR inhibitors in lung adenocarcinoma. Nature Metabolism, 1(4), 460–474. https://doi.org/10.1038/s42255-019-0052-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Patel, S. B., Nemkov, T., Stefanoni, D., Benavides, G. A., Bassal, M. A., Crown, B. L., Matkins, V. R., Camacho, V., Kuznetsova, V., Hoang, A. T., et al. (2021). Metabolic alterations mediated by STAT3 promotes drug persistence in CML. Leukemia, 35(12), 3371–3382. https://doi.org/10.1038/s41375-021-01315-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Paredes, F., Williams, H. C., & San Martin, A. (2021). Metabolic adaptation in hypoxia and cancer. Cancer Letters, 502, 133–142. https://doi.org/10.1016/j.canlet.2020.12.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Harper, M.-E., Antoniou, A., Villalobos-Menuey, E., Russo, A., Trauger, R., Vendemelio, M., George, A., Bartholomew, R., Carlo, D., Shaikh, A., et al. (2002). Characterization of a novel metabolic strategy used by drug-resistant tumor cells. The FASEB Journal, 16(12), 1550–1557. https://doi.org/10.1096/fj.02-0541com

    Article  CAS  PubMed  Google Scholar 

  57. Oren, Y., Tsabar, M., Cuoco, M. S., Amir-Zilberstein, L., Cabanos, H. F., Hütter, J.-C., Hu, B., Thakore, P. I., Tabaka, M., Fulco, C. P., et al. (2021). Cycling cancer persister cells arise from lineages with distinct programs. Nature, 1–7. https://doi.org/10.1038/s41586-021-03796-6

  58. Pike, L. S., Smift, A. L., Croteau, N. J., Ferrick, D. A., & Wu, M. (2011). Inhibition of fatty acid oxidation by etomoxir impairs NADPH production and increases reactive oxygen species resulting in ATP depletion and cell death in human glioblastoma cells. Biochimica et Biophysica Acta (BBA). Bioenergetics, 1807(6), 726–734. https://doi.org/10.1016/j.bbabio.2010.10.022

    Article  CAS  Google Scholar 

  59. Jeon, S.-M., Chandel, N. S., & Hay, N. (2012). AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature, 485(7400), 661–665. https://doi.org/10.1038/nature11066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kaplan, O., Navon, G., Lyon, R. C., Faustino, P. J., Straka, E. J., & Cohen, J. S. (1990). Effects of 2-deoxyglucose on drug-sensitive and drug-resistant human breast cancer cells: Toxicity and magnetic resonance spectroscopy studies of metabolism. Cancer Research, 50(3), 544–551.

    CAS  PubMed  Google Scholar 

  61. La Belle Flynn, A., Calhoun, B. C., Sharma, A., Chang, J. C., Almasan, A., & Schiemann, W. P. (2019). Autophagy inhibition elicits emergence from metastatic dormancy by inducing and stabilizing Pfkfb3 expression. Nature Communications, 10(1), 3668. https://doi.org/10.1038/s41467-019-11640-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Morris, V. L., Tuck, A. B., Wilson, S. M., Percy, D., & Chambers, A. F. (1993). Tumor progression and metastasis in murine D2 hyperplastic alveolar nodule mammary tumor cell lines. Clinical & Experimental Metastasis, 11(1), 103–112. https://doi.org/10.1007/BF00880071

    Article  CAS  Google Scholar 

  63. Rusu, P., Shao, C., Neuerburg, A., Acikgöz, A. A., Wu, Y., Zou, P., Phapale, P., Shankar, T. S., Döring, K., Dettling, S., et al. (2019). GPD1 specifically marks dormant glioma stem cells with a distinct metabolic profile. Cell Stem Cell, 25(2), 241–257.e8. https://doi.org/10.1016/j.stem.2019.06.004

    Article  CAS  PubMed  Google Scholar 

  64. Chino, H. (1957). Conversion of glycogen to sorbitol and glycerol in the diapause egg of the bombyx silkworm. Nature, 180(4586), 606–607. https://doi.org/10.1038/180606b0

    Article  CAS  Google Scholar 

  65. Vyas, S., Zaganjor, E., & Haigis, M. C. (2016). Mitochondria and cancer. Cell, 166(3), 555–566. https://doi.org/10.1016/j.cell.2016.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Viale, A., Pettazzoni, P., Lyssiotis, C. A., Ying, H., Sánchez, N., Marchesini, M., Carugo, A., Green, T., Seth, S., Giuliani, V., et al. (2014). Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature, 514(7524), 628–632. https://doi.org/10.1038/nature13611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Samuels, A. L., Heng, J. Y., Beesley, A. H., & Kees, U. R. (2014). Bioenergetic modulation overcomes glucocorticoid resistance in T-lineage acute lymphoblastic leukaemia. British Journal of Haematology, 165(1), 57–66. https://doi.org/10.1111/bjh.12727

    Article  CAS  PubMed  Google Scholar 

  68. Molina, J. R., Sun, Y., Protopopova, M., Gera, S., Bandi, M., Bristow, C., McAfoos, T., Morlacchi, P., Ackroyd, J., Agip, A. N. A., et al. (2018). An inhibitor of oxidative phosphorylation exploits cancer vulnerability. Nature Medicine, 24(7), 1036–1046. https://doi.org/10.1038/s41591-018-0052-4

    Article  CAS  PubMed  Google Scholar 

  69. Vyas, A., Harbison, R. A., Faden, D. L., Kubik, M., Palmer, D., Zhang, Q., Osmanbeyoglu, H. U., Kiselyov, K., Méndez, E., & Duvvuri, U. (2021). Recurrent human papillomavirus–related head and neck cancer undergoes metabolic reprogramming and is driven by oxidative phosphorylation. Clinical Cancer Research, 27(22), 6250–6264. https://doi.org/10.1158/1078-0432.CCR-20-4789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yap, T. A., Rodon Ahnert, J., Piha-Paul, S. A., Fu, S., Janku, F., Karp, D. D., Naing, A., Ileana Dumbrava, E. E., Pant, S., Subbiah, V., et al. (2019). Phase I trial of IACS-010759 (IACS), a potent, selective inhibitor of complex I of the mitochondrial electron transport chain, in patients (pts) with advanced solid tumors. Journal of Clinical Oncology, 37(15_suppl), 3014–3014. https://doi.org/10.1200/JCO.2019.37.15_suppl.3014

    Article  Google Scholar 

  71. Nouri, K., Feng, Y., & Schimmer, A. D. (2020). Mitochondrial ClpP serine protease-biological function and emerging target for cancer therapy. Cell Death & Disease, 11(10), 1–12. https://doi.org/10.1038/s41419-020-03062-z

    Article  CAS  Google Scholar 

  72. Graves, P. R., Aponte-Collazo, L. J., Fennell, E. M. J., Graves, A. C., Hale, A. E., Dicheva, N., Herring, L. E., Gilbert, T. S. K., East, M. P., McDonald, I. M., et al. (2019). Mitochondrial protease ClpP is a target for the anticancer compounds ONC201 and related analogues. ACS Chemical Biology, 14(5), 1020–1029. https://doi.org/10.1021/acschembio.9b00222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Shi, Y., Lim, S. K., Liang, Q., Iyer, S. V., Wang, H.-Y., Wang, Z., Xie, X., Sun, D., Chen, Y.-J., Tabar, V., et al. (2019). Gboxin is an oxidative phosphorylation inhibitor that targets glioblastoma. Nature, 567(7748), 341–346. https://doi.org/10.1038/s41586-019-0993-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhang, X., Fryknäs, M., Hernlund, E., Fayad, W., De Milito, A., Olofsson, M. H., Gogvadze, V., Dang, L., Påhlman, S., Schughart, L. A. K., et al. (2014). Induction of mitochondrial dysfunction as a strategy for targeting tumour cells in metabolically compromised microenvironments. Nature Communications, 5(1), 1–14. https://doi.org/10.1038/ncomms4295

    Article  CAS  Google Scholar 

  75. Sharon, D., Cathelin, S., Mirali, S., Di Trani, J. M., Yanofsky, D. J., Keon, K. A., Rubinstein, J. L., Schimmer, A. D., Ketela, T., & Chan, S. M. (2019). Inhibition of mitochondrial translation overcomes venetoclax resistance in AML through activation of the integrated stress response. Science Translational Medicine, 11(516), 2863. https://doi.org/10.1126/scitranslmed.aax2863

    Article  CAS  Google Scholar 

  76. Kuntz, E. M., Baquero, P., Michie, A. M., Dunn, K., Tardito, S., Holyoake, T. L., Helgason, G. V., & Gottlieb, E. (2017). Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemia stem cells. Nature Medicine, 23(10), 1234–1240. https://doi.org/10.1038/nm.4399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Taanman, J.-W. (1999). The mitochondrial genome: structure, transcription, translation and replication. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1410(2), 103–123. https://doi.org/10.1016/S0005-2728(98)00161-3

    Article  CAS  PubMed  Google Scholar 

  78. Bonekamp, N. A., Peter, B., Hillen, H. S., Felser, A., Bergbrede, T., Choidas, A., Horn, M., Unger, A., Di Lucrezia, R., Atanassov, I., et al. (2020). Small-molecule inhibitors of human mitochondrial DNA transcription. Nature, 588(7839), 712–716. https://doi.org/10.1038/s41586-020-03048-z

    Article  CAS  PubMed  Google Scholar 

  79. Samudio, I., Harmancey, R., Fiegl, M., Kantarjian, H., Konopleva, M., Korchin, B., Kaluarachchi, K., Bornmann, W., Duvvuri, S., Taegtmeyer, H., et al. (2010). Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction. The Journal of Clinical Investigation, 120(1), 142–156. https://doi.org/10.1172/JCI38942

    Article  CAS  PubMed  Google Scholar 

  80. Caro, P., Kishan, A. U., Norberg, E., Stanley, I., Chapuy, B., Ficarro, S. B., Polak, K., Tondera, D., Gounarides, J., Yin, H., et al. (2012). Metabolic signatures uncover distinct targets in molecular subsets of diffuse large B-cell lymphoma. Cancer cell, 22(4), 547–560. https://doi.org/10.1016/j.ccr.2012.08.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Menendez, J. A., & Lupu, R. (2017). Fatty acid synthase (FASN) as a therapeutic target in breast cancer. Expert Opinion on Therapeutic Targets, 21(11), 1001–1016. https://doi.org/10.1080/14728222.2017.1381087

    Article  CAS  PubMed  Google Scholar 

  82. Heuer, T. S., Ventura, R., Mordec, K., Lai, J., Fridlib, M., Buckley, D., & Kemble, G. (2017). FASN inhibition and taxane treatment combine to enhance anti-tumor efficacy in diverse xenograft tumor models through disruption of tubulin palmitoylation and microtubule organization and fasn inhibition-mediated effects on oncogenic signaling and gene expression. EBioMedicine, 16, 51–62. https://doi.org/10.1016/j.ebiom.2016.12.012

    Article  PubMed  Google Scholar 

  83. Zaytseva, Y. Y., Rychahou, P. G., Le, A.-T., Scott, T. L., Flight, R. M., Kim, J. T., Harris, J., Liu, J., Wang, C., Morris, A. J., et al. (2018). Preclinical evaluation of novel fatty acid synthase inhibitors in primary colorectal cancer cells and a patient-derived xenograft model of colorectal cancer. Oncotarget, 9(37), 24787–24800. https://doi.org/10.18632/oncotarget.25361

    Article  PubMed  PubMed Central  Google Scholar 

  84. Falchook, G., Infante, J., Arkenau, H.-T., Patel, M. R., Dean, E., Borazanci, E., Brenner, A., Cook, N., Lopez, J., Pant, S., et al. (2021). First-in-human study of the safety, pharmacokinetics, and pharmacodynamics of first-in-class fatty acid synthase inhibitor TVB-2640 alone and with a taxane in advanced tumors. eClinicalMedicine, 34. https://doi.org/10.1016/j.eclinm.2021.100797

    Article  Google Scholar 

  85. Feng, W. W., Wilkins, O., Bang, S., Ung, M., Li, J., An, J., del Genio, C., Canfield, K., DiRenzo, J., Wells, W., et al. (2019). CD36-mediated metabolic rewiring of breast cancer cells promotes resistance to HER2-targeted therapies. Cell Reports, 29(11), 3405–3420.e5. https://doi.org/10.1016/j.celrep.2019.11.008

    Article  CAS  PubMed  Google Scholar 

  86. Hernlund, E., Ihrlund, L. S., Khan, O., Ates, Y. O., Linder, S., Panaretakis, T., & Shoshan, M. C. (2008). Potentiation of chemotherapeutic drugs by energy metabolism inhibitors 2-deoxyglucose and etomoxir. International Journal of Cancer, 123(2), 476–483. https://doi.org/10.1002/ijc.23525

    Article  CAS  PubMed  Google Scholar 

  87. Holubarsch, C. J. F., Rohrbach, M., Karrasch, M., Boehm, E., Polonski, L., Ponikowski, P., & Rhein, S. (2007). A double-blind randomized multicentre clinical trial to evaluate the efficacy and safety of two doses of etomoxir in comparison with placebo in patients with moderate congestive heart failure: the ERGO (etomoxir for the recovery of glucose oxidation) study. Clinical Science, 113(4), 205–212. https://doi.org/10.1042/CS20060307

    Article  CAS  PubMed  Google Scholar 

  88. Zachar, Z., Marecek, J., Maturo, C., Gupta, S., Stuart, S. D., Howell, K., Schauble, A., Lem, J., Piramzadian, A., Karnik, S., et al. (2011). Non-redox-active lipoate derivates disrupt cancer cell mitochondrial metabolism and are potent anticancer agents in vivo. Journal of Molecular Medicine, 89(11), 1137. https://doi.org/10.1007/s00109-011-0785-8

    Article  CAS  PubMed  Google Scholar 

  89. Arnold, C., Demuth, P., Seiwert, N., Wittmann, S., Boengler, K., Rasenberger, B., Christmann, M., Huber, M., Brunner, T., Linnebacher, M., et al. (2022). The mitochondrial disruptor devimistat (CPI-613) synergizes with genotoxic anticancer drugs in colorectal cancer therapy in a Bim-dependent manner. Molecular Cancer Therapeutics, 21(1), 100–112. https://doi.org/10.1158/1535-7163.MCT-21-0393

    Article  CAS  PubMed  Google Scholar 

  90. Pardee, T. S., Luther, S., Buyse, M., Powell, B. L., & Cortes, J. (2019). Devimistat in combination with high dose cytarabine and mitoxantrone compared with high dose cytarabine and mitoxantrone in older patients with relapsed/refractory acute myeloid leukemia: ARMADA 2000 Phase III study. Future Oncology, 15(28), 3197–3208. https://doi.org/10.2217/fon-2019-0201

    Article  CAS  PubMed  Google Scholar 

  91. Anderson, R., Miller, L. D., Isom, S., Chou, J. W., Pladna, K. M., Schramm, N. J., Ellis, L. R., Howard, D. S., Bhave, R. R., Manuel, M., et al. (2022). Phase II trial of cytarabine and mitoxantrone with devimistat in acute myeloid leukemia. Nature Communications, 13(1), 1673. https://doi.org/10.1038/s41467-022-29039-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Tsvetkov, P., Coy, S., Petrova, B., Dreishpoon, M., Verma, A., Abdusamad, M., Rossen, J., Joesch-Cohen, L., Humeidi, R., Spangler, R. D., et al. (2022). Copper induces cell death by targeting lipoylated TCA cycle proteins. Science, 375(6586), 1254–1261. https://doi.org/10.1126/science.abf0529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Tsvetkov, P., Detappe, A., Cai, K., Keys, H. R., Brune, Z., Ying, W., Thiru, P., Reidy, M., Kugener, G., Rossen, J., et al. (2019). Mitochondrial metabolism promotes adaptation to proteotoxic stress. Nature Chemical Biology, 15(7), 681–689. https://doi.org/10.1038/s41589-019-0291-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. de Groot, S., Pijl, H., van der Hoeven, J. J. M., & Kroep, J. R. (2019). Effects of short-term fasting on cancer treatment. Journal of Experimental & Clinical Cancer Research : CR, 38, 209. https://doi.org/10.1186/s13046-019-1189-9

    Article  PubMed Central  Google Scholar 

  95. Caffa, I., Spagnolo, V., Vernieri, C., Valdemarin, F., Becherini, P., Wei, M., Brandhorst, S., Zucal, C., Driehuis, E., Ferrando, L., et al. (2020). Fasting-mimicking diet and hormone therapy induce breast cancer regression. Nature, 583(7817), 620–624. https://doi.org/10.1038/s41586-020-2502-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Thandapani, P., Kloetgen, A., Witkowski, M. T., Glytsou, C., Lee, A. K., Wang, E., Wang, J., LeBoeuf, S. E., Avrampou, K., Papagiannakopoulos, T., et al. (2022). Valine tRNA levels and availability regulate complex I assembly in leukaemia. Nature, 601(7893), 428–433. https://doi.org/10.1038/s41586-021-04244-1

    Article  CAS  PubMed  Google Scholar 

  97. Rose, D. P. (1997). Effects of dietary fatty acids on breast and prostate cancers: evidence from in vitro experiments and animal studies. The American Journal of Clinical Nutrition, 66(6), 1513S–1522S. https://doi.org/10.1093/ajcn/66.6.1513S

    Article  CAS  PubMed  Google Scholar 

  98. Donnelly, C., Olsen, A. M., Lewis, L. D., Eisenberg, B. L., Eastman, A., & Kinlaw, W. B. (2009). Conjugated Linoleic Acid (CLA) inhibits expression of the spot 14 (THRSP) and fatty acid synthase genes and impairs the growth of human breast cancer and liposarcoma cells. Nutrition and Cancer, 61(1), 114–122. https://doi.org/10.1080/01635580802348666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. McGowan, M. M., Eisenberg, B. L., Lewis, L. D., Froehlich, H. M., Wells, W. A., Eastman, A., Kuemmerle, N. B., Rosenkrantz, K. M., Barth, R. J., Schwartz, G. N., et al. (2013). A proof of principle clinical trial to determine whether conjugated linoleic acid modulates the lipogenic pathway in human breast cancer tissue. Breast Cancer Research and Treatment, 138(1), 175–183. https://doi.org/10.1007/s10549-013-2446-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Mayer, E. L., Dueck, A. C., Martin, M., Rubovszky, G., Burstein, H. J., Bellet-Ezquerra, M., Miller, K. D., Zdenkowski, N., Winer, E. P., Pfeiler, G., et al. (2021). Palbociclib with adjuvant endocrine therapy in early breast cancer (PALLAS): Interim analysis of a multicentre, open-label, randomised, phase 3 study. The Lancet Oncology, 22(2), 212–222. https://doi.org/10.1016/S1470-2045(20)30642-2

    Article  CAS  PubMed  Google Scholar 

  101. Vansteenkiste, J. F., Cho, B. C., Vanakesa, T., De Pas, T., Zielinski, M., Kim, M. S., Jassem, J., Yoshimura, M., Dahabreh, J., Nakayama, H., et al. (2016). Efficacy of the MAGE-A3 cancer immunotherapeutic as adjuvant therapy in patients with resected MAGE-A3-positive non-small-cell lung cancer (MAGRIT): A randomised, double-blind, placebo-controlled, phase 3 trial. The Lancet. Oncology, 17(6), 822–835. https://doi.org/10.1016/S1470-2045(16)00099-1

    Article  CAS  PubMed  Google Scholar 

  102. Alberts, S. R., Sargent, D. J., Nair, S., Mahoney, M. R., Mooney, M., Thibodeau, S. N., Smyrk, T. C., Sinicrope, F. A., Chan, E., Gill, S., et al. (2012). Effect of oxaliplatin, fluorouracil, and leucovorin with or without cetuximab on survival among patients with resected stage III colon cancer: A randomized trial. JAMA, 307(13), 1383–1393. https://doi.org/10.1001/jama.2012.385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Nielsen, T. O., Jensen, M.-B., Burugu, S., Gao, D., Jørgensen, C. L. T., Balslev, E., & Ejlertsen, B. (2017). High-risk premenopausal luminal a breast cancer patients derive no benefit from adjuvant cyclophosphamide-based chemotherapy: Results from the DBCG77B clinical trial. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 23(4), 946–953. https://doi.org/10.1158/1078-0432.CCR-16-1278

    Article  CAS  PubMed  Google Scholar 

  104. Haas, N. B., Manola, J., Uzzo, R. G., Flaherty, K. T., Wood, C. G., Kane, C., Jewett, M., Dutcher, J. P., Atkins, M. B., Pins, M., et al. (2016). Adjuvant sunitinib or sorafenib for high-risk, non-metastatic renal-cell carcinoma (ECOG-ACRIN E2805): A double-blind, placebo-controlled, randomised, phase 3 trial. Lancet (London, England), 387(10032), 2008–2016. https://doi.org/10.1016/S0140-6736(16)00559-6

    Article  CAS  PubMed  Google Scholar 

  105. de Gramont, A., Van Cutsem, E., Schmoll, H.-J., Tabernero, J., Clarke, S., Moore, M. J., Cunningham, D., Cartwright, T. H., Hecht, J. R., Rivera, F., et al. (2012). Bevacizumab plus oxaliplatin-based chemotherapy as adjuvant treatment for colon cancer (AVANT): A phase 3 randomised controlled trial. The Lancet Oncology, 13(12), 1225–1233. https://doi.org/10.1016/S1470-2045(12)70509-0

    Article  CAS  PubMed  Google Scholar 

  106. Allegra, C. J., Yothers, G., O’Connell, M. J., Sharif, S., Petrelli, N. J., Colangelo, L. H., Atkins, J. N., Seay, T. E., Fehrenbacher, L., Goldberg, R. M., et al. (2011). Phase III trial assessing bevacizumab in stages II and III carcinoma of the colon: Results of NSABP protocol C-08. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 29(1), 11–16. https://doi.org/10.1200/JCO.2010.30.0855

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Cancer Institute (R01CA211869, R01CA200994, R01CA262232, R01CA267691 to TWM; Dartmouth Cancer Center Support Grant P30CA023108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd W. Miller.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tau, S., Miller, T.W. The role of cancer cell bioenergetics in dormancy and drug resistance. Cancer Metastasis Rev 42, 87–98 (2023). https://doi.org/10.1007/s10555-023-10081-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-023-10081-7

Keywords

Navigation