Skip to main content

Advertisement

Log in

Circadian disruption: from mouse models to molecular mechanisms and cancer therapeutic targets

  • Non-Thematic Review
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract 

The circadian clock is a timekeeping system for numerous biological rhythms that contribute to the regulation of numerous homeostatic processes in humans. Disruption of circadian rhythms influences physiology and behavior and is associated with adverse health outcomes, especially cancer. However, the underlying molecular mechanisms of circadian disruption-associated cancer initiation and development remain unclear. It is essential to construct good circadian disruption models to uncover and validate the detailed molecular clock framework of circadian disruption in cancer development and progression. Mouse models are the most widely used in circadian studies due to their relatively small size, fast reproduction cycle, easy genome manipulation, and economic practicality. Here, we reviewed the current mouse models of circadian disruption, including suprachiasmatic nuclei destruction, genetic engineering, light disruption, sleep deprivation, and other lifestyle factors in our understanding of the crosstalk between circadian rhythms and oncogenic signaling, as well as the molecular mechanisms of circadian disruption that promotes cancer growth. We focused on the discoveries made with the nocturnal mouse, diurnal human being, and cell culture and provided several circadian rhythm-based cancer therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

SCN:

Suprachiasmatic nuclei

TTFLs:

Transcription-translation negative feedback loops

ARNTL:

Hydrocarbon receptor nuclear translocator-like protein 1

BMAL1:

Brain and muscle ARNT-like protein1

CLOCK:

Circadian locomotor output cycles kaput

PER1:

Period 1

PER2:

Period 2

PER3:

Period 3

CRY1:

Cryptochrome 1

CRY2:

Cryptochrome 2

NR1D1:

Nuclear receptor subfamily 1 group D member 1

NR1D2:

Nuclear receptor subfamily 1 group D member 2

CK1δ:

Casein kinase 1δ

ROR:

Retinoic acid receptor-related orphan receptor

RORE:

ROR-response element

PAR-bZIP:

Proline and acidic amino acid-rich basic leucine zipper

DBP:

D-element-binding protein

TEF:

Thyrotrophic embryonic factor

HLF:

Hepatic leukemia factor

NFIL3:

Nuclear factor interleukin 3-regulated

AMPK:

AMP-activated protein kinase

mTOR:

Mechanistic target of rapamycin

HIF1α:

Hypoxia-inducible factor-1α

MAPKs:

Mitogen-activated protein kinases

MAPK8:

MAP kinases 8

GSK3β:

Glycogen synthase kinase 3 beta

ATF4:

Activating transcription factor 4

CRE:

CAMP-response element

NRF2:

Nuclear factor erythroid 2-related factor 2

PPARs:

Peroxisome proliferator-activated receptors

RXR:

Retinoid X receptor

PPRE:

PPAR response element

PGC-1α:

PPARγ coactivator 1α

CDK1:

Cyclin-dependent kinase 1

CREB:

CAMP response element-binding protein

CBP:

CREB-binding protein

HDAC3:

Histone deacetylase 3

ipRGCs:

intrinsically photosensitive retinal ganglion cells

IGL:

Intergeniculate leaflet

GOS:

Glasgow osteosarcoma

AAV:

Adeno-associated virus

KD:

Knockdown

KO:

Knockout

Cre:

cyclization recombination recombinase

FRT:

Flippase recognition target

ABC:

ATP-binding cassette

ABCG5:

ABC subfamily G member 5

ABCG8:

ABC subfamily G member 8

NAFLD:

Non-alcoholic fatty liver disease

CRC:

Colorectal cancer

OS:

Overall survival

PFS:

Progression-free survival

HCC:

Hepatocellular carcinoma

CAR:

Constitutive androstane receptor

ROS:

Reactive oxygen species

LSC:

Leukemia stem cells

EMT:

Epithelial to mesenchymal transition

OSCC:

Oral squamous cell carcinoma

GSC:

Glioma stem-like cells

Aldh3a1:

Aldehyde dehydrogenase 3a1

DKO:

Double KO

DEN:

Diethylnitrosamine

RHT:

Retinohypothalamic tract

CJL:

Chronic jet lag

LD:

Light-dark

DD:

Constant darkness

NK:

Nature killer

LL:

Constant light

LAN:

Light at night

DOX:

Doxorubicin

BMI:

Body mass index

WTE:

Wrong time eating

Th17:

T-helper cell 17

Treg:

Regulatory T

TME:

tumor microenvironment

TRE:

Time-restricted eating

HFD:

High-fat diet

RTE:

Right time eating

SD:

Sleep deprivation

DCs:

dendritic cells

MPM:

Multiple platform method

MDSCs:

myeloid-derived suppressor cells

PSD:

Paradoxical sleep deprivation

IL-1β:

interleukin-1β

ASD:

Acute sleep deprivation

TAMs:

tumor-associated macrophages

CSD:

Chronic sleep deprivation

SF:

Sleep fragmentation

NAT:

N-acetyltransferase

HIOMT:

Hydroxy indole-O-methyltransferase

UEGs:

Universally expressed genes

GABA:

G-Aminobutyric acid

PACAP:

Cyclase-activating peptide

ANS:

Autonomic nervous system

PVN-SCG:

Paraventricular nucleus-superior cervical ganglia

TTX:

Tetrodotoxin

VIP:

Vasoactive intestinal peptide

CNO:

clozapine N-oxide

DREADD:

Designer receptors exclusively activated by designer drugs

Tc17 CD8+ :

type 17 effector

NOB:

Natural flavonoid nobiletin

PFKFB3:

6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3

DIO:

Diet-induced obese

G6PD:

glucose-6-phosphate 1-dehydrogenase

References

  1. Shafi, A. A., & Knudsen, K. E. (2019). Cancer and the circadian clock. Cancer Research, 79(15), 3806–3814. https://doi.org/10.1158/0008-5472.Can-19-0566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Huang, W., Ramsey, K. M., Marcheva, B., & Bass, J. (2011). Circadian rhythms, sleep, and metabolism. The Journal of Clinical Investigation, 121(6), 2133–2141. https://doi.org/10.1172/jci46043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Panda, S. (2016). Circadian physiology of metabolism. Science, 354(6315), 1008–1015. https://doi.org/10.1126/science.aah4967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Firsov, D., & Bonny, O. (2018). Circadian rhythms and the kidney. Nature Reviews. Nephrology, 14(10), 626–635. https://doi.org/10.1038/s41581-018-0048-9

    Article  CAS  PubMed  Google Scholar 

  5. Brancaccio, M., Edwards, M. D., Patton, A. P., Smyllie, N. J., Chesham, J. E., Maywood, E. S., et al. (2019). Cell-autonomous clock of astrocytes drives circadian behavior in mammals. Science, 363(6423), 187–192. https://doi.org/10.1126/science.aat4104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Millar, A. J. (2016). The intracellular dynamics of circadian clocks reach for the light of ecology and evolution. Annual Review of Plant Biology, 67, 595–618. https://doi.org/10.1146/annurev-arplant-043014-115619

    Article  CAS  PubMed  Google Scholar 

  7. Poggiogalle, E., Jamshed, H., & Peterson, C. M. (2018). Circadian regulation of glucose, lipid, and energy metabolism in humans. Metabolism, 84, 11–27. https://doi.org/10.1016/j.metabol.2017.11.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ruan, G. X., Gamble, K. L., Risner, M. L., Young, L. A., & McMahon, D. G. (2012). Divergent roles of clock genes in retinal and suprachiasmatic nucleus circadian oscillators. PLoS ONE, 7(6), e38985. https://doi.org/10.1371/journal.pone.0038985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. St John, P. C., Hirota, T., Kay, S. A., & Doyle, F. J., 3rd. (2014). Spatiotemporal separation of PER and CRY posttranslational regulation in the mammalian circadian clock. Proc Natl Acad Sci USA, 111(5), 2040–2045. https://doi.org/10.1073/pnas.1323618111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Challet, E. (2019). The circadian regulation of food intake. Nature Reviews. Endocrinology, 15(7), 393–405. https://doi.org/10.1038/s41574-019-0210-x

    Article  PubMed  Google Scholar 

  11. Lee, J., Lee, S., Chung, S., Park, N., Son, G. H., An, H., et al. (2016). Identification of a novel circadian clock modulator controlling BMAL1 expression through a ROR/REV-ERB-response element-dependent mechanism. Biochemical and Biophysical Research Communications, 469(3), 580–586. https://doi.org/10.1016/j.bbrc.2015.12.030

    Article  CAS  PubMed  Google Scholar 

  12. Gerhart-Hines, Z., & Lazar, M. A. (2015). Rev-erbα and the circadian transcriptional regulation of metabolism. Diabetes Obes Metab, 17 Suppl 1(0 1), 12–16. https://doi.org/10.1111/dom.12510

  13. Kojetin, D. J., & Burris, T. P. (2014). REV-ERB and ROR nuclear receptors as drug targets. Nature Reviews. Drug Discovery, 13(3), 197–216. https://doi.org/10.1038/nrd4100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mohawk, J. A., Green, C. B., & Takahashi, J. S. (2012). Central and peripheral circadian clocks in mammals. Annual Review of Neuroscience, 35, 445–462. https://doi.org/10.1146/annurev-neuro-060909-153128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhou, L., Zhang, Z., Nice, E., Huang, C., Zhang, W., & Tang, Y. (2022). Circadian rhythms and cancers: The intrinsic links and therapeutic potentials. Journal of Hematology & Oncology, 15(1), 21. https://doi.org/10.1186/s13045-022-01238-y

    Article  CAS  Google Scholar 

  16. Lamia, K. A., Sachdeva, U. M., DiTacchio, L., Williams, E. C., Alvarez, J. G., Egan, D. F., et al. (2009). AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science, 326(5951), 437–440. https://doi.org/10.1126/science.1172156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Um, J. H., Yang, S., Yamazaki, S., Kang, H., Viollet, B., Foretz, M., et al. (2007). Activation of 5’-AMP-activated kinase with diabetes drug metformin induces casein kinase Iepsilon (CKIepsilon)-dependent degradation of clock protein mPer2. Journal of Biological Chemistry, 282(29), 20794–20798. https://doi.org/10.1074/jbc.C700070200

    Article  CAS  PubMed  Google Scholar 

  18. Ramanathan, C., Kathale, N. D., Liu, D., Lee, C., Freeman, D. A., Hogenesch, J. B., et al. (2018). mTOR signaling regulates central and peripheral circadian clock function. PLoS Genetics, 14(5), e1007369. https://doi.org/10.1371/journal.pgen.1007369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lipton, J. O., Boyle, L. M., Yuan, E. D., Hochstrasser, K. J., Chifamba, F. F., Nathan, A., et al. (2017). Aberrant proteostasis of BMAL1 underlies circadian abnormalities in a paradigmatic mTOR-opathy. Cell Reports, 20(4), 868–880. https://doi.org/10.1016/j.celrep.2017.07.008

    Article  CAS  PubMed  Google Scholar 

  20. Peek, C. B., Levine, D. C., Cedernaes, J., Taguchi, A., Kobayashi, Y., Tsai, S. J., et al. (2017). Circadian clock interaction with HIF1alpha mediates oxygenic metabolism and anaerobic glycolysis in skeletal muscle. Cell Metabolism, 25(1), 86–92. https://doi.org/10.1016/j.cmet.2016.09.010

    Article  CAS  PubMed  Google Scholar 

  21. Magnelli, L., Schiavone, N., Staderini, F., Biagioni, A., & Papucci, L. (2020). MAP kinases pathways in gastric cancer. Int J Mol Sci, 21(8). https://doi.org/10.3390/ijms21082893

  22. Yoshitane, H., Honma, S., Imamura, K., Nakajima, H., Nishide, S. Y., Ono, D., et al. (2012). JNK regulates the photic response of the mammalian circadian clock. EMBO Reports, 13(5), 455–461. https://doi.org/10.1038/embor.2012.37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sahar, S., Zocchi, L., Kinoshita, C., Borrelli, E., & Sassone-Corsi, P. (2010). Regulation of BMAL1 protein stability and circadian function by GSK3beta-mediated phosphorylation. PLoS ONE, 5(1), e8561. https://doi.org/10.1371/journal.pone.0008561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jiang, W., Zhao, S., Jiang, X., Zhang, E., Hu, G., Hu, B., et al. (2016). The circadian clock gene Bmal1 acts as a potential anti-oncogene in pancreatic cancer by activating the p53 tumor suppressor pathway. Cancer Letters, 371(2), 314–325. https://doi.org/10.1016/j.canlet.2015.12.002

    Article  CAS  PubMed  Google Scholar 

  25. Miki, T., Matsumoto, T., Zhao, Z., & Lee, C. C. (2013). p53 regulates Period2 expression and the circadian clock. Nature Communications, 4, 2444. https://doi.org/10.1038/ncomms3444

    Article  CAS  PubMed  Google Scholar 

  26. Koyanagi, S., Hamdan, A. M., Horiguchi, M., Kusunose, N., Okamoto, A., Matsunaga, N., et al. (2011). cAMP-response element (CRE)-mediated transcription by activating transcription factor-4 (ATF4) is essential for circadian expression of the Period2 gene. Journal of Biological Chemistry, 286(37), 32416–32423. https://doi.org/10.1074/jbc.M111.258970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. He, F., Antonucci, L., & Karin, M. (2020). NRF2 as a regulator of cell metabolism and inflammation in cancer. Carcinogenesis, 41(4), 405–416. https://doi.org/10.1093/carcin/bgaa039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. He, F., Antonucci, L., Yamachika, S., Zhang, Z., Taniguchi, K., Umemura, A., et al. (2020). NRF2 activates growth factor genes and downstream AKT signaling to induce mouse and human hepatomegaly. Journal of Hepatology, 72(6), 1182–1195. https://doi.org/10.1016/j.jhep.2020.01.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Early, J. O., Menon, D., Wyse, C. A., Cervantes-Silva, M. P., Zaslona, Z., Carroll, R. G., et al. (2018). Circadian clock protein BMAL1 regulates IL-1beta in macrophages via NRF2. Proc Natl Acad Sci U S A, 115(36), E8460–E8468. https://doi.org/10.1073/pnas.1800431115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wible, R. S., Ramanathan, C., Sutter, C. H., Olesen, K. M., Kensler, T. W., Liu, A. C., et al. (2018). NRF2 regulates core and stabilizing circadian clock loops, coupling redox and timekeeping in Mus musculus. Elife, 7. https://doi.org/10.7554/eLife.31656

  31. Chen, L., & Yang, G. (2014). PPARs integrate the mammalian clock and energy metabolism. PPAR Research, 2014, 653017. https://doi.org/10.1155/2014/653017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. McNamara, P., Seo, S. B., Rudic, R. D., Sehgal, A., Chakravarti, D., & FitzGerald, G. A. (2001). Regulation of CLOCK and MOP4 by nuclear hormone receptors in the vasculature: A humoral mechanism to reset a peripheral clock. Cell, 105(7), 877–889. https://doi.org/10.1016/s0092-8674(01)00401-9

    Article  CAS  PubMed  Google Scholar 

  33. Oishi, K., Shirai, H., & Ishida, N. (2005). CLOCK is involved in the circadian transactivation of peroxisome-proliferator-activated receptor alpha (PPARalpha) in mice. The Biochemical Journal, 386(Pt 3), 575–581. https://doi.org/10.1042/bj20041150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schmutz, I., Ripperger, J. A., Baeriswyl-Aebischer, S., & Albrecht, U. (2010). The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors. Genes & Development, 24(4), 345–357. https://doi.org/10.1101/gad.564110

    Article  CAS  Google Scholar 

  35. Wang, S., Lin, Y., Gao, L., Yang, Z., Lin, J., Ren, S., et al. (2022). PPAR-γ integrates obesity and adipocyte clock through epigenetic regulation of Bmal1. Theranostics, 12(4), 1589–1606. https://doi.org/10.7150/thno.69054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li, S., & Lin, J. D. (2015). Transcriptional control of circadian metabolic rhythms in the liver. Diabetes Obes Metab, 17 Suppl 1(0 1), 33–38. https://doi.org/10.1111/dom.12520

  37. Zhao, X., Hirota, T., Han, X., Cho, H., Chong, L. W., Lamia, K., et al. (2016). Circadian amplitude regulation via FBXW7-targeted REV-ERBα degradation. Cell, 165(7), 1644–1657. https://doi.org/10.1016/j.cell.2016.05.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kwak, Y., Jeong, J., Lee, S., Park, Y. U., Lee, S. A., Han, D. H., et al. (2013). Cyclin-dependent kinase 5 (Cdk5) regulates the function of CLOCK protein by direct phosphorylation. Journal of Biological Chemistry, 288(52), 36878–36889. https://doi.org/10.1074/jbc.M113.494856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ou, J., Li, H., Qiu, P., Li, Q., Chang, H. C., & Tang, Y. C. (2019). CDK9 modulates circadian clock by attenuating REV-ERBα activity. Biochemical and Biophysical Research Communications, 513(4), 967–973. https://doi.org/10.1016/j.bbrc.2019.04.043

    Article  CAS  PubMed  Google Scholar 

  40. Lee, Y., Lee, J., Kwon, I., Nakajima, Y., Ohmiya, Y., Son, G. H., et al. (2010). Coactivation of the CLOCK-BMAL1 complex by CBP mediates resetting of the circadian clock. Journal of Cell Science, 123(Pt 20), 3547–3557. https://doi.org/10.1242/jcs.070300

    Article  CAS  PubMed  Google Scholar 

  41. Shi, G., Xie, P., Qu, Z., Zhang, Z., Dong, Z., An, Y., et al. (2016). Distinct roles of HDAC3 in the core circadian negative feedback loop are critical for clock function. Cell Reports, 14(4), 823–834. https://doi.org/10.1016/j.celrep.2015.12.076

    Article  CAS  PubMed  Google Scholar 

  42. Travis, R. C., Balkwill, A., Fensom, G. K., Appleby, P. N., Reeves, G. K., Wang, X. S., et al. (2016). Night shift work and breast cancer incidence: Three prospective studies and meta-analysis of published studies. J Natl Cancer Inst, 108(12). https://doi.org/10.1093/jnci/djw169

  43. Lin, X., Chen, W., Wei, F., Ying, M., Wei, W., & Xie, X. (2015). Night-shift work increases morbidity of breast cancer and all-cause mortality: A meta-analysis of 16 prospective cohort studies. Sleep Medicine, 16(11), 1381–1387. https://doi.org/10.1016/j.sleep.2015.02.543

    Article  PubMed  Google Scholar 

  44. Cordina-Duverger, E., Menegaux, F., Popa, A., Rabstein, S., Harth, V., Pesch, B., et al. (2018). Night shift work and breast cancer: A pooled analysis of population-based case-control studies with complete work history. European Journal of Epidemiology, 33(4), 369–379. https://doi.org/10.1007/s10654-018-0368-x

    Article  PubMed  Google Scholar 

  45. Mancio, J., Leal, C., Ferreira, M., Norton, P., & Lunet, N. (2018). Does the association of prostate cancer with night-shift work differ according to rotating vs. fixed schedule? A systematic review and meta-analysis. Prostate Cancer Prostatic Dis, 21(3), 337–344. https://doi.org/10.1038/s41391-018-0040-2

    Article  PubMed  Google Scholar 

  46. Hansen, J. (2017). Night shift work and risk of breast cancer. Curr Environ Health Rep, 4(3), 325–339. https://doi.org/10.1007/s40572-017-0155-y

    Article  PubMed  Google Scholar 

  47. Arriaga, J. M., & Abate-Shen, C. (2019). Genetically engineered mouse models of prostate cancer in the postgenomic era. Cold Spring Harb Perspect Med, 9(2). https://doi.org/10.1101/cshperspect.a030528

  48. Walrath, J. C., Hawes, J. J., Van Dyke, T., & Reilly, K. M. (2010). Genetically engineered mouse models in cancer research. Advances in Cancer Research, 106, 113–164. https://doi.org/10.1016/s0065-230x(10)06004-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Potter, G. D., Skene, D. J., Arendt, J., Cade, J. E., Grant, P. J., & Hardie, L. J. (2016). Circadian rhythm and sleep disruption: Causes, metabolic consequences, and countermeasures. Endocrine Reviews, 37(6), 584–608. https://doi.org/10.1210/er.2016-1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hastings, M. H., Maywood, E. S., & Brancaccio, M. (2018). Generation of circadian rhythms in the suprachiasmatic nucleus. Nature Reviews Neuroscience, 19(8), 453–469. https://doi.org/10.1038/s41583-018-0026-z

    Article  CAS  PubMed  Google Scholar 

  51. Welsh, D. K., Takahashi, J. S., & Kay, S. A. (2010). Suprachiasmatic nucleus: Cell autonomy and network properties. Annual Review of Physiology, 72, 551–577. https://doi.org/10.1146/annurev-physiol-021909-135919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Herzog, E. D. (2007). Neurons and networks in daily rhythms. Nature Reviews Neuroscience, 8(10), 790–802. https://doi.org/10.1038/nrn2215

    Article  CAS  PubMed  Google Scholar 

  53. Golombek, D. A., & Rosenstein, R. E. (2010). Physiology of circadian entrainment. Physiological Reviews, 90(3), 1063–1102. https://doi.org/10.1152/physrev.00009.2009

    Article  CAS  PubMed  Google Scholar 

  54. Riedel, C. S., Georg, B., Fahrenkrug, J., & Hannibal, J. (2020). Altered light induced EGR1 expression in the SCN of PACAP deficient mice. PLoS ONE, 15(5), e0232748. https://doi.org/10.1371/journal.pone.0232748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Barca-Mayo, O., Pons-Espinal, M., Follert, P., Armirotti, A., Berdondini, L., & De Pietri Tonelli, D. (2017). Astrocyte deletion of Bmal1 alters daily locomotor activity and cognitive functions via GABA signalling. Nature Communications, 8, 14336. https://doi.org/10.1038/ncomms14336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fernandez, D. C., Komal, R., Langel, J., Ma, J., Duy, P. Q., Penzo, M. A., et al. (2020). Retinal innervation tunes circuits that drive nonphotic entrainment to food. Nature, 581(7807), 194–198. https://doi.org/10.1038/s41586-020-2204-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mendoza, J. (2017). Circadian neurons in the lateral habenula: Clocking motivated behaviors. Pharmacology, Biochemistry and Behavior, 162, 55–61. https://doi.org/10.1016/j.pbb.2017.06.013

    Article  CAS  PubMed  Google Scholar 

  58. Son, G. H., Chung, S., & Kim, K. (2011). The adrenal peripheral clock: Glucocorticoid and the circadian timing system. Frontiers in Neuroendocrinology, 32(4), 451–465. https://doi.org/10.1016/j.yfrne.2011.07.003

    Article  CAS  PubMed  Google Scholar 

  59. Jones, J. R., Chaturvedi, S., Granados-Fuentes, D., & Herzog, E. D. (2021). Circadian neurons in the paraventricular nucleus entrain and sustain daily rhythms in glucocorticoids. Nature Communications, 12(1), 5763. https://doi.org/10.1038/s41467-021-25959-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Koronowski, K. B., & Sassone-Corsi, P. (2021). Communicating clocks shape circadian homeostasis. Science, 371(6530). https://doi.org/10.1126/science.abd0951

  61. Bass, J., & Lazar, M. A. (2016). Circadian time signatures of fitness and disease. Science, 354(6315), 994–999. https://doi.org/10.1126/science.aah4965

    Article  CAS  PubMed  Google Scholar 

  62. Patton, A. P., & Hastings, M. H. (2018). The suprachiasmatic nucleus. Current Biology, 28(15), R816-r822. https://doi.org/10.1016/j.cub.2018.06.052

    Article  CAS  PubMed  Google Scholar 

  63. Maywood, E. S., Smith, E., Hall, S. J., & Hastings, M. H. (1997). A thalamic contribution to arousal-induced, non-photic entrainment of the circadian clock of the Syrian hamster. European Journal of Neuroscience, 9(8), 1739–1747. https://doi.org/10.1111/j.1460-9568.1997.tb01531.x

    Article  CAS  PubMed  Google Scholar 

  64. Filipski, E., King, V. M., Etienne, M. C., Li, X., Claustrat, B., Granda, T. G., et al. (2004). Persistent twenty-four hour changes in liver and bone marrow despite suprachiasmatic nuclei ablation in mice. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 287(4), R844-851. https://doi.org/10.1152/ajpregu.00085.2004

    Article  CAS  PubMed  Google Scholar 

  65. Filipski, E., King, V. M., Li, X., Granda, T. G., Mormont, M. C., Claustrat, B., et al. (2003). Disruption of circadian coordination accelerates malignant growth in mice. Pathologie Biologie, 51(4), 216–219. https://doi.org/10.1016/s0369-8114(03)00034-8

    Article  PubMed  Google Scholar 

  66. Yamaguchi, S., Isejima, H., Matsuo, T., Okura, R., Yagita, K., Kobayashi, M., et al. (2003). Synchronization of cellular clocks in the suprachiasmatic nucleus. Science, 302(5649), 1408–1412. https://doi.org/10.1126/science.1089287

    Article  CAS  PubMed  Google Scholar 

  67. Maywood, E. S., O’Neill, J. S., Chesham, J. E., & Hastings, M. H. (2007). Minireview: The circadian clockwork of the suprachiasmatic nuclei–analysis of a cellular oscillator that drives endocrine rhythms. Endocrinology, 148(12), 5624–5634. https://doi.org/10.1210/en.2007-0660

    Article  CAS  PubMed  Google Scholar 

  68. Deery, M. J., Maywood, E. S., Chesham, J. E., Sládek, M., Karp, N. A., Green, E. W., et al. (2009). Proteomic analysis reveals the role of synaptic vesicle cycling in sustaining the suprachiasmatic circadian clock. Current Biology, 19(23), 2031–2036. https://doi.org/10.1016/j.cub.2009.10.024

    Article  CAS  PubMed  Google Scholar 

  69. Webb, A. B., Angelo, N., Huettner, J. E., & Herzog, E. D. (2009). Intrinsic, nondeterministic circadian rhythm generation in identified mammalian neurons. Proc Natl Acad Sci USA, 106(38), 16493–16498. https://doi.org/10.1073/pnas.0902768106

    Article  PubMed  PubMed Central  Google Scholar 

  70. Harmar, A. J., Marston, H. M., Shen, S., Spratt, C., West, K. M., Sheward, W. J., et al. (2002). The VPAC(2) receptor is essential for circadian function in the mouse suprachiasmatic nuclei. Cell, 109(4), 497–508. https://doi.org/10.1016/s0092-8674(02)00736-5

    Article  CAS  PubMed  Google Scholar 

  71. Mazuski, C., Chen, S. P., & Herzog, E. D. (2020). Different roles for VIP neurons in the neonatal and adult suprachiasmatic nucleus. Journal of Biological Rhythms, 35(5), 465–475. https://doi.org/10.1177/0748730420932073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Jones, J. R., Simon, T., Lones, L., & Herzog, E. D. (2018). SCN VIP neurons are essential for normal light-mediated resetting of the circadian system. Journal of Neuroscience, 38(37), 7986–7995. https://doi.org/10.1523/jneurosci.1322-18.2018

    Article  CAS  PubMed  Google Scholar 

  73. Freeman, G. M., Jr., Nakajima, M., Ueda, H. R., & Herzog, E. D. (2013). Picrotoxin dramatically speeds the mammalian circadian clock independent of Cys-loop receptors. Journal of Neurophysiology, 110(1), 103–108. https://doi.org/10.1152/jn.00220.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hermanstyne, T. O., Granados-Fuentes, D., Mellor, R. L., Herzog, E. D., & Nerbonne, J. M. (2017). Acute knockdown of Kv4.1 regulates repetitive firing rates and clock gene expression in the suprachiasmatic nucleus and daily rhythms in locomotor behavior. eNeuro, 4(3). https://doi.org/10.1523/eneuro.0377-16.2017

  75. Granados-Fuentes, D., Hermanstyne, T. O., Carrasquillo, Y., Nerbonne, J. M., & Herzog, E. D. (2015). IA channels encoded by Kv1.4 and Kv4.2 regulate circadian period of PER2 expression in the suprachiasmatic nucleus. J Biol Rhythms, 30(5), 396–407. https://doi.org/10.1177/0748730415593377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kofuji, P., Mure, L. S., Massman, L. J., Purrier, N., Panda, S., & Engeland, W. C. (2016). Intrinsically photosensitive retinal ganglion cells (ipRGCs) are necessary for light entrainment of peripheral clocks. PLoS ONE, 11(12), e0168651. https://doi.org/10.1371/journal.pone.0168651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gomez, J. L., Bonaventura, J., Lesniak, W., Mathews, W. B., Sysa-Shah, P., Rodriguez, L. A., et al. (2017). Chemogenetics revealed: DREADD occupancy and activation via converted clozapine. Science, 357(6350), 503–507. https://doi.org/10.1126/science.aan2475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wang, Y., Jiang, W., Chen, H., Zhou, H., Liu, Z., Liu, Z., et al. (2021). Sympathetic nervous system mediates cardiac remodeling after myocardial infarction in a circadian disruption model. Front Cardiovasc Med, 8, 668387. https://doi.org/10.3389/fcvm.2021.668387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hablitz, L. M., Gunesch, A. N., Cravetchi, O., Moldavan, M., & Allen, C. N. (2020). Cannabinoid signaling recruits astrocytes to modulate presynaptic function in the suprachiasmatic nucleus. eNeuro, 7(1). https://doi.org/10.1523/eneuro.0081-19.2020

  80. Landgraf, D., Long, J. E., Proulx, C. D., Barandas, R., Malinow, R., & Welsh, D. K. (2016). Genetic disruption of circadian rhythms in the suprachiasmatic nucleus causes helplessness, behavioral despair, and anxiety-like behavior in mice. Biological Psychiatry, 80(11), 827–835. https://doi.org/10.1016/j.biopsych.2016.03.1050

    Article  PubMed  PubMed Central  Google Scholar 

  81. Tso, C. F., Simon, T., Greenlaw, A. C., Puri, T., Mieda, M., & Herzog, E. D. (2017). Astrocytes regulate daily rhythms in the suprachiasmatic nucleus and behavior. Current Biology, 27(7), 1055–1061. https://doi.org/10.1016/j.cub.2017.02.037

    Article  CAS  PubMed  Google Scholar 

  82. Sueviriyapan, N., Tso, C. F., Herzog, E. D., & Henson, M. A. (2020). Astrocytic modulation of neuronal activity in the suprachiasmatic nucleus: Insights from mathematical modeling. Journal of Biological Rhythms, 35(3), 287–301. https://doi.org/10.1177/0748730420913672

    Article  PubMed  PubMed Central  Google Scholar 

  83. Kolbe, I., Leinweber, B., Brandenburger, M., & Oster, H. (2019). Circadian clock network desynchrony promotes weight gain and alters glucose homeostasis in mice. Mol Metab, 30, 140–151. https://doi.org/10.1016/j.molmet.2019.09.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kozlov, S. V., Bogenpohl, J. W., Howell, M. P., Wevrick, R., Panda, S., Hogenesch, J. B., et al. (2007). The imprinted gene Magel2 regulates normal circadian output. Nature Genetics, 39(10), 1266–1272. https://doi.org/10.1038/ng2114

    Article  CAS  PubMed  Google Scholar 

  85. Mizoguchi, A., Takeuchi, T., Himuro, H., Okada, T., & Mizoguchi, E. (2016). Genetically engineered mouse models for studying inflammatory bowel disease. The Journal of Pathology, 238(2), 205–219. https://doi.org/10.1002/path.4640

    Article  PubMed  Google Scholar 

  86. Annunziato, S., Lutz, C., Henneman, L., Bhin, J., Wong, K., Siteur, B., et al. (2020). In situ CRISPR-Cas9 base editing for the development of genetically engineered mouse models of breast cancer. Embo j, 39(5), e102169. https://doi.org/10.15252/embj.2019102169

  87. Schmid, R. S., Vitucci, M., & Miller, C. R. (2012). Genetically engineered mouse models of diffuse gliomas. Brain Research Bulletin, 88(1), 72–79. https://doi.org/10.1016/j.brainresbull.2011.06.002

    Article  CAS  PubMed  Google Scholar 

  88. Anderson, K. R., Haeussler, M., Watanabe, C., Janakiraman, V., Lund, J., Modrusan, Z., et al. (2018). CRISPR off-target analysis in genetically engineered rats and mice. Nature Methods, 15(7), 512–514. https://doi.org/10.1038/s41592-018-0011-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Korge, S., Grudziecki, A., & Kramer, A. (2015). Highly efficient genome editing via CRISPR/Cas9 to create clock gene knockout cells. Journal of Biological Rhythms, 30(5), 389–395. https://doi.org/10.1177/0748730415597519

    Article  CAS  PubMed  Google Scholar 

  90. Kersten, K., de Visser, K. E., van Miltenburg, M. H., & Jonkers, J. (2017). Genetically engineered mouse models in oncology research and cancer medicine. EMBO Mol Med, 9(2), 137–153. https://doi.org/10.15252/emmm.201606857

  91. Haque, S. N., Booreddy, S. R., & Welsh, D. K. (2019). Effects of BMAL1 manipulation on the brain’s master circadian clock and behavior. The Yale Journal of Biology and Medicine, 92(2), 251–258.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Zhang, Y., Devocelle, A., Desterke, C., de Souza, L. E. B., Hadadi, É., Acloque, H., et al. (2021). BMAL1 Knockdown leans epithelial-mesenchymal balance toward epithelial properties and decreases the chemoresistance of colon carcinoma cells. Int J Mol Sci, 22(10). https://doi.org/10.3390/ijms22105247

  93. Liu, X., Xiao, W., Jiang, Y., Zou, L., Chen, F., Xiao, W., et al. (2021). Bmal1 regulates the redox rhythm of HSPB1, and homooxidized HSPB1 attenuates the oxidative stress injury of cardiomyocytes. Oxidative Medicine and Cellular Longevity, 2021, 5542815. https://doi.org/10.1155/2021/5542815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Umemura, A., He, F., Taniguchi, K., Nakagawa, H., Yamachika, S., Font-Burgada, J., et al. (2016). p62, Upregulated during preneoplasia, induces hepatocellular carcinogenesis by maintaining survival of stressed HCC-initiating cells. Cancer Cell, 29(6), 935–948. https://doi.org/10.1016/j.ccell.2016.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Liu, Z., Selby, C. P., Yang, Y., Lindsey-Boltz, L. A., Cao, X., Eynullazada, K., et al. (2020). Circadian regulation of c-MYC in mice. Proc Natl Acad Sci U S A, 117(35), 21609–21617. https://doi.org/10.1073/pnas.2011225117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lee, S., Donehower, L. A., Herron, A. J., Moore, D. D., & Fu, L. (2010). Disrupting circadian homeostasis of sympathetic signaling promotes tumor development in mice. PLoS ONE, 5(6), e10995. https://doi.org/10.1371/journal.pone.0010995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Papagiannakopoulos, T., Bauer, M. R., Davidson, S. M., Heimann, M., Subbaraj, L., Bhutkar, A., et al. (2016). Circadian rhythm disruption promotes lung tumorigenesis. Cell Metabolism, 24(2), 324–331. https://doi.org/10.1016/j.cmet.2016.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Liu, J. L., Wang, C. Y., Cheng, T. Y., Rixiati, Y., Ji, C., Deng, M., et al. (2021). Circadian clock disruption suppresses PDL1(+) intraepithelial B cells in experimental colitis and colitis-associated colorectal cancer. Cellular and Molecular Gastroenterology and Hepatology, 12(1), 251–276. https://doi.org/10.1016/j.jcmgh.2021.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Pan, X., Bradfield, C. A., & Hussain, M. M. (2016). Global and hepatocyte-specific ablation of Bmal1 induces hyperlipidaemia and enhances atherosclerosis. Nature Communications, 7, 13011. https://doi.org/10.1038/ncomms13011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kettner, N. M., Voicu, H., Finegold, M. J., Coarfa, C., Sreekumar, A., Putluri, N., et al. (2016). Circadian homeostasis of liver metabolism suppresses hepatocarcinogenesis. Cancer Cell, 30(6), 909–924. https://doi.org/10.1016/j.ccell.2016.10.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Alexander, R. K., Liou, Y. H., Knudsen, N. H., Starost, K. A., Xu, C., Hyde, A. L., et al. (2020). Bmal1 integrates mitochondrial metabolism and macrophage activation. Elife, 9. https://doi.org/10.7554/eLife.54090

  102. Zeng, Z. L., Wu, M. W., Sun, J., Sun, Y. L., Cai, Y. C., Huang, Y. J., et al. (2010). Effects of the biological clock gene Bmal1 on tumour growth and anti-cancer drug activity. Journal of Biochemistry, 148(3), 319–326. https://doi.org/10.1093/jb/mvq069

    Article  CAS  PubMed  Google Scholar 

  103. Zeng, Z. L., Luo, H. Y., Yang, J., Wu, W. J., Chen, D. L., Huang, P., et al. (2014). Overexpression of the circadian clock gene Bmal1 increases sensitivity to oxaliplatin in colorectal cancer. Clincal Cancer Research, 20(4), 1042–1052. https://doi.org/10.1158/1078-0432.Ccr-13-0171

    Article  CAS  Google Scholar 

  104. Puram, R. V., Kowalczyk, M. S., de Boer, C. G., Schneider, R. K., Miller, P. G., McConkey, M., et al. (2016). Core Circadian Clock Genes Regulate Leukemia Stem Cells in AML. Cell, 165(2), 303–316. https://doi.org/10.1016/j.cell.2016.03.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Korkmaz, T., Aygenli, F., Emisoglu, H., Ozcelik, G., Canturk, A., Yilmaz, S., et al. (2018). Opposite carcinogenic effects of circadian clock gene BMAL1. Science and Reports, 8(1), 16023. https://doi.org/10.1038/s41598-018-34433-4

    Article  CAS  Google Scholar 

  106. Wang, Y., Sun, N., Lu, C., Bei, Y., Qian, R., & Hua, L. (2017). Upregulation of circadian gene ‘hClock’ contribution to metastasis of colorectal cancer. International Journal of Oncology, 50(6), 2191–2199. https://doi.org/10.3892/ijo.2017.3987

    Article  CAS  PubMed  Google Scholar 

  107. Li, X. M., Claustrat, B., Hastings, M. H., Albrecht, U., & Lévi, F. (2007). Interactions between clock gene mutation, circadian phenotype and tumor growth in mice. Pathologie Biologie, 55(3–4), 194–197. https://doi.org/10.1016/j.patbio.2006.12.003

    Article  PubMed  Google Scholar 

  108. Yang, X., Wood, P. A., Ansell, C. M., Quiton, D. F., Oh, E. Y., Du-Quiton, J., et al. (2009). The circadian clock gene Per1 suppresses cancer cell proliferation and tumor growth at specific times of day. Chronobiology International, 26(7), 1323–1339. https://doi.org/10.3109/07420520903431301

    Article  CAS  PubMed  Google Scholar 

  109. Yang, G., Yang, Y., Tang, H., & Yang, K. (2020). Loss of the clock gene Per1 promotes oral squamous cell carcinoma progression via the AKT/mTOR pathway. Cancer Science, 111(5), 1542–1554. https://doi.org/10.1111/cas.14362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Han, Y., Meng, F., Venter, J., Wu, N., Wan, Y., Standeford, H., et al. (2016). miR-34a-dependent overexpression of Per1 decreases cholangiocarcinoma growth. Journal of Hepatology, 64(6), 1295–1304. https://doi.org/10.1016/j.jhep.2016.02.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Fu, L., Pelicano, H., Liu, J., Huang, P., & Lee, C. (2002). The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell, 111(1), 41–50. https://doi.org/10.1016/s0092-8674(02)00961-3

    Article  CAS  PubMed  Google Scholar 

  112. Wood, P. A., Yang, X., Taber, A., Oh, E. Y., Ansell, C., Ayers, S. E., et al. (2008). Period 2 mutation accelerates ApcMin/+ tumorigenesis. Molecular Cancer Research, 6(11), 1786–1793. https://doi.org/10.1158/1541-7786.Mcr-08-0196

    Article  CAS  PubMed  Google Scholar 

  113. Yang, X., Wood, P. A., Oh, E. Y., Du-Quiton, J., Ansell, C. M., & Hrushesky, W. J. (2009). Down regulation of circadian clock gene Period 2 accelerates breast cancer growth by altering its daily growth rhythm. Breast Cancer Research and Treatment, 117(2), 423–431. https://doi.org/10.1007/s10549-008-0133-z

    Article  PubMed  Google Scholar 

  114. Ma, D., Hou, L., Xia, H., Li, H., Fan, H., Jia, X., et al. (2020). PER2 inhibits proliferation and stemness of glioma stem cells via the Wnt/β-catenin signaling pathway. Oncology Reports, 44(2), 533–542. https://doi.org/10.3892/or.2020.7624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hua, H., Wang, Y., Wan, C., Liu, Y., Zhu, B., Yang, C., et al. (2006). Circadian gene mPer2 overexpression induces cancer cell apoptosis. Cancer Science, 97(7), 589–596. https://doi.org/10.1111/j.1349-7006.2006.00225.x

    Article  CAS  PubMed  Google Scholar 

  116. Hua, H., Wang, Y., Wan, C., Liu, Y., Zhu, B., Wang, X., et al. (2007). Inhibition of tumorigenesis by intratumoral delivery of the circadian gene mPer2 in C57BL/6 mice. Cancer Gene Therapy, 14(9), 815–818. https://doi.org/10.1038/sj.cgt.7701061

    Article  CAS  PubMed  Google Scholar 

  117. Katamune, C., Koyanagi, S., Hashikawa, K. I., Kusunose, N., Akamine, T., Matsunaga, N., et al. (2019). Mutation of the gene encoding the circadian clock component PERIOD2 in oncogenic cells confers chemoresistance by up-regulating the Aldh3a1 gene. Journal of Biological Chemistry, 294(2), 547–558. https://doi.org/10.1074/jbc.RA118.004942

    Article  CAS  PubMed  Google Scholar 

  118. Gu, X., Xing, L., Shi, G., Liu, Z., Wang, X., Qu, Z., et al. (2012). The circadian mutation PER2(S662G) is linked to cell cycle progression and tumorigenesis. Cell Death and Differentiation, 19(3), 397–405. https://doi.org/10.1038/cdd.2011.103

    Article  CAS  PubMed  Google Scholar 

  119. Matsumura, R., & Akashi, M. (2019). Role of the clock gene Period3 in the human cell-autonomous circadian clock. Genes to Cells, 24(2), 162–171. https://doi.org/10.1111/gtc.12664

    Article  CAS  PubMed  Google Scholar 

  120. Bae, K., Jin, X., Maywood, E. S., Hastings, M. H., Reppert, S. M., & Weaver, D. R. (2001). Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock. Neuron, 30(2), 525–536. https://doi.org/10.1016/s0896-6273(01)00302-6

    Article  CAS  PubMed  Google Scholar 

  121. Gauger, M. A., & Sancar, A. (2005). Cryptochrome, circadian cycle, cell cycle checkpoints, and cancer. Cancer Research, 65(15), 6828–6834. https://doi.org/10.1158/0008-5472.Can-05-1119

    Article  CAS  PubMed  Google Scholar 

  122. Mteyrek, A., Filipski, E., Guettier, C., Oklejewicz, M., van der Horst, G. T., Okyar, A., et al. (2017). Critical cholangiocarcinogenesis control by cryptochrome clock genes. International Journal of Cancer, 140(11), 2473–2483. https://doi.org/10.1002/ijc.30663

    Article  CAS  PubMed  Google Scholar 

  123. Ozturk, N., Lee, J. H., Gaddameedhi, S., & Sancar, A. (2009). Loss of cryptochrome reduces cancer risk in p53 mutant mice. Proc Natl Acad Sci USA, 106(8), 2841–2846. https://doi.org/10.1073/pnas.0813028106

    Article  PubMed  PubMed Central  Google Scholar 

  124. Kinouchi, K., & Sassone-Corsi, P. (2020). Metabolic rivalry: Circadian homeostasis and tumorigenesis. Nature Reviews Cancer, 20(11), 645–661. https://doi.org/10.1038/s41568-020-0291-9

    Article  CAS  PubMed  Google Scholar 

  125. Vajtay, T. J., St Thomas, J. J., Takacs, T. E., McGann, E. G., & Weber, E. T. (2017). Duration and timing of daily light exposure influence the rapid shifting of BALB/cJ mouse circadian locomotor rhythms. Physiology & Behavior, 179, 200–207. https://doi.org/10.1016/j.physbeh.2017.06.010

    Article  CAS  Google Scholar 

  126. Casiraghi, L. P., Oda, G. A., Chiesa, J. J., Friesen, W. O., & Golombek, D. A. (2012). Forced desynchronization of activity rhythms in a model of chronic jet lag in mice. Journal of Biological Rhythms, 27(1), 59–69. https://doi.org/10.1177/0748730411429447

    Article  PubMed  Google Scholar 

  127. Horsey, E. A., Maletta, T., Turner, H., Cole, C., Lehmann, H., & Fournier, N. M. (2019). Chronic jet lag simulation decreases hippocampal neurogenesis and enhances depressive behaviors and cognitive deficits in adult male rats. Frontiers in Behavioral Neuroscience, 13, 272. https://doi.org/10.3389/fnbeh.2019.00272

    Article  PubMed  Google Scholar 

  128. Woller, A., & Gonze, D. (2021). Circadian misalignment and metabolic disorders: A story of twisted clocks. Biology (Basel), 10(3) https://doi.org/10.3390/biology10030207

  129. Hadadi, E., Taylor, W., Li, X. M., Aslan, Y., Villote, M., Rivière, J., et al. (2020). Chronic circadian disruption modulates breast cancer stemness and immune microenvironment to drive metastasis in mice. Nature Communications, 11(1), 3193. https://doi.org/10.1038/s41467-020-16890-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Van Dycke, K. C., Rodenburg, W., van Oostrom, C. T., van Kerkhof, L. W., Pennings, J. L., Roenneberg, T., et al. (2015). Chronically alternating light cycles increase breast cancer risk in mice. Current Biology, 25(14), 1932–1937. https://doi.org/10.1016/j.cub.2015.06.012

    Article  CAS  PubMed  Google Scholar 

  131. Wu, M., Zeng, J., Chen, Y., Zeng, Z., Zhang, J., Cai, Y., et al. (2012). Experimental chronic jet lag promotes growth and lung metastasis of Lewis lung carcinoma in C57BL/6 mice. Oncology Reports, 27(5), 1417–1428. https://doi.org/10.3892/or.2012.1688

    Article  CAS  PubMed  Google Scholar 

  132. Filipski, E., Innominato, P. F., Wu, M., Li, X. M., Iacobelli, S., Xian, L. J., et al. (2005). Effects of light and food schedules on liver and tumor molecular clocks in mice. Journal of the National Cancer Institute, 97(7), 507–517. https://doi.org/10.1093/jnci/dji083

    Article  CAS  PubMed  Google Scholar 

  133. Filipski, E., & Lévi, F. (2009). Circadian disruption in experimental cancer processes. Integrative Cancer Therapies, 8(4), 298–302. https://doi.org/10.1177/1534735409352085

    Article  CAS  PubMed  Google Scholar 

  134. Aiello, I., Fedele, M. L. M., Román, F., Marpegan, L., Caldart, C., Chiesa, J. J., et al. (2020). Circadian disruption promotes tumor-immune microenvironment remodeling favoring tumor cell proliferation. Sci Adv, 6(42). https://doi.org/10.1126/sciadv.aaz4530

  135. Logan, R. W., Zhang, C., Murugan, S., O’Connell, S., Levitt, D., Rosenwasser, A. M., et al. (2012). Chronic shift-lag alters the circadian clock of NK cells and promotes lung cancer growth in rats. The Journal of Immunology, 188(6), 2583–2591. https://doi.org/10.4049/jimmunol.1102715

    Article  CAS  PubMed  Google Scholar 

  136. Zeng, X., Liang, C., & Yao, J. (2020). Chronic shift-lag promotes NK cell ageing and impairs immunosurveillance in mice by decreasing the expression of CD122. Journal of Cellular and Molecular Medicine, 24(24), 14583–14595. https://doi.org/10.1111/jcmm.16088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Cos, S., Mediavilla, D., Martinez-Campa, C., Gonzalez, A., Alonso-Gonzalez, C., & Sanchez-Barcelo, E. J. (2006). Exposure to light-at-night increases the growth of DMBA-induced mammary adenocarcinomas in rats. Cancer Letters, 235(2), 266–271. https://doi.org/10.1016/j.canlet.2005.04.025

    Article  CAS  PubMed  Google Scholar 

  138. Yasuniwa, Y., Izumi, H., Wang, K. Y., Shimajiri, S., Sasaguri, Y., Kawai, K., et al. (2010). Circadian disruption accelerates tumor growth and angio/stromagenesis through a Wnt signaling pathway. PLoS ONE, 5(12), e15330. https://doi.org/10.1371/journal.pone.0015330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Vinogradova, I. A., Anisimov, V. N., Bukalev, A. V., Semenchenko, A. V., & Zabezhinski, M. A. (2009). Circadian disruption induced by light-at-tnight accelerates aging and promotes tumorigenesis in rats. Aging (Albany NY), 1(10), 855–865. https://doi.org/10.18632/aging.100092

    Article  CAS  PubMed  Google Scholar 

  140. Blask, D. E., Dauchy, R. T., Dauchy, E. M., Mao, L., Hill, S. M., Greene, M. W., et al. (2014). Light exposure at night disrupts host/cancer circadian regulatory dynamics: Impact on the Warburg effect, lipid signaling and tumor growth prevention. PLoS ONE, 9(8), e102776. https://doi.org/10.1371/journal.pone.0102776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Oh, E. Y., Yang, X., Friedman, A., Ansell, C. M., Du-Quiton, J., Quiton, D. F., et al. (2010). Circadian transcription profile of mouse breast cancer under light-dark and dark-dark conditions. Cancer Genomics & Proteomics, 7(6), 311–322.

    CAS  Google Scholar 

  142. Xiang, S., Dauchy, R. T., Hauch, A., Mao, L., Yuan, L., Wren, M. A., et al. (2015). Doxorubicin resistance in breast cancer is driven by light at night-induced disruption of the circadian melatonin signal. Journal of Pineal Research, 59(1), 60–69. https://doi.org/10.1111/jpi.12239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Bishehsari, F., Saadalla, A., Khazaie, K., Engen, P. A., Voigt, R. M., Shetuni, B. B., et al. (2016). Light/dark shifting promotes alcohol-induced colon carcinogenesis: Possible role of intestinal inflammatory milieu and microbiota. Int J Mol Sci, 17(12). https://doi.org/10.3390/ijms17122017

  144. Tahara, Y., & Shibata, S. (2018). Entrainment of the mouse circadian clock: Effects of stress, exercise, and nutrition. Free Radical Biology & Medicine, 119, 129–138. https://doi.org/10.1016/j.freeradbiomed.2017.12.026

    Article  CAS  Google Scholar 

  145. Kahleova, H., Lloren, J. I., Mashchak, A., Hill, M., & Fraser, G. E. (2017). Meal frequency and timing are associated with changes in body mass index in adventist health study 2. Journal of Nutrition, 147(9), 1722–1728. https://doi.org/10.3945/jn.116.244749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kogevinas, M., Espinosa, A., Castelló, A., Gómez-Acebo, I., Guevara, M., Martin, V., et al. (2018). Effect of mistimed eating patterns on breast and prostate cancer risk (MCC-Spain Study). International Journal of Cancer, 143(10), 2380–2389. https://doi.org/10.1002/ijc.31649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Marinac, C. R., Natarajan, L., Sears, D. D., Gallo, L. C., Hartman, S. J., Arredondo, E., et al. (2015). Prolonged nightly fasting and breast cancer risk: Findings from NHANES (2009–2010). Cancer Epidemiology, Biomarkers & Prevention, 24(5), 783–789. https://doi.org/10.1158/1055-9965.Epi-14-1292

    Article  CAS  Google Scholar 

  148. Bishehsari, F., Engen, P. A., Voigt, R. M., Swanson, G., Shaikh, M., Wilber, S., et al. (2020). Abnormal eating patterns cause circadian disruption and promote alcohol-associated colon carcinogenesis. Cellular and Molecular Gastroenterology and Hepatology, 9(2), 219–237. https://doi.org/10.1016/j.jcmgh.2019.10.011

    Article  PubMed  Google Scholar 

  149. Bishehsari, F., Preuss, F., Mirbagheri, S. S., Zhang, L., Shaikh, M., & Keshavarzian, A. (2020). Interaction of alcohol with time of eating on markers of circadian dyssynchrony and colon tissue injury. Chemico-Biological Interactions, 325, 109132. https://doi.org/10.1016/j.cbi.2020.109132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Bishehsari, F., Engen, P. A., Adnan, D., Sarrafi, S., Wilber, S., Shaikh, M., et al. (2021). Abnormal food timing and predisposition to weight gain: Role of barrier dysfunction and microbiota. Translational Research, 231, 113–123. https://doi.org/10.1016/j.trsl.2020.11.007

    Article  CAS  PubMed  Google Scholar 

  151. Eckel-Mahan, K. L., Patel, V. R., de Mateo, S., Orozco-Solis, R., Ceglia, N. J., Sahar, S., et al. (2013). Reprogramming of the circadian clock by nutritional challenge. Cell, 155(7), 1464–1478. https://doi.org/10.1016/j.cell.2013.11.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Potter, G. D., Cade, J. E., Grant, P. J., & Hardie, L. J. (2016). Nutrition and the circadian system. British Journal of Nutrition, 116(3), 434–442. https://doi.org/10.1017/s0007114516002117

    Article  CAS  PubMed  Google Scholar 

  153. Sundaram, S., & Yan, L. (2018). Time-restricted feeding mitigates high-fat diet-enhanced mammary tumorigenesis in MMTV-PyMT mice. Nutrition Research, 59, 72–79. https://doi.org/10.1016/j.nutres.2018.07.014

    Article  CAS  PubMed  Google Scholar 

  154. Yan, L., Sundaram, S., Mehus, A. A., & Picklo, M. J. (2019). Time-restricted feeding attenuates high-fat diet-enhanced spontaneous metastasis of Lewis lung carcinoma in mice. Anticancer Res, 39(4), 1739–1748. https://doi.org/10.21873/anticanres.13280

    Article  CAS  PubMed  Google Scholar 

  155. Yan, L., Rust, B. M., & Picklo, M. J. (2020). Plasma metabolomic changes in mice with time-restricted feeding-attenuated spontaneous metastasis of Lewis lung carcinoma. Anticancer Res, 40(4), 1833–1841. https://doi.org/10.21873/anticanres.14137

    Article  CAS  PubMed  Google Scholar 

  156. Das, M., Ellies, L. G., Kumar, D., Sauceda, C., Oberg, A., Gross, E., et al. (2021). Time-restricted feeding normalizes hyperinsulinemia to inhibit breast cancer in obese postmenopausal mouse models. Nature Communications, 12(1), 565. https://doi.org/10.1038/s41467-020-20743-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Molina-Aguilar, C., Guerrero-Carrillo, M. J., Espinosa-Aguirre, J. J., Olguin-Reyes, S., Castro-Belio, T., Vázquez-Martínez, O., et al. (2017). Time-caloric restriction inhibits the neoplastic transformation of cirrhotic liver in rats treated with diethylnitrosamine. Carcinogenesis, 38(8), 847–858. https://doi.org/10.1093/carcin/bgx052

    Article  CAS  PubMed  Google Scholar 

  158. Tahara, Y., Aoyama, S., & Shibata, S. (2017). The mammalian circadian clock and its entrainment by stress and exercise. The Journal of Physiological Sciences, 67(1), 1–10. https://doi.org/10.1007/s12576-016-0450-7

    Article  CAS  PubMed  Google Scholar 

  159. Tahara, Y., Shiraishi, T., Kikuchi, Y., Haraguchi, A., Kuriki, D., Sasaki, H., et al. (2015). Entrainment of the mouse circadian clock by sub-acute physical and psychological stress. Science and Reports, 5, 11417. https://doi.org/10.1038/srep11417

    Article  Google Scholar 

  160. Sasaki, H., Hattori, Y., Ikeda, Y., Kamagata, M., Iwami, S., Yasuda, S., et al. (2016). Forced rather than voluntary exercise entrains peripheral clocks via a corticosterone/noradrenaline increase in PER2::LUC mice. Science and Reports, 6, 27607. https://doi.org/10.1038/srep27607

    Article  CAS  Google Scholar 

  161. Spiliopoulou, P., Gavriatopoulou, M., Kastritis, E., Dimopoulos, M. A., & Terzis, G. (2021). Exercise-induced changes in tumor growth via tumor immunity. Sports (Basel), 9(4). https://doi.org/10.3390/sports9040046

  162. Rundqvist, H., Velica, P., Barbieri, L., Gameiro, P. A., Bargiela, D., Gojkovic, M., et al. (2020). Cytotoxic T-cells mediate exercise-induced reductions in tumor growth. Elife, 9. https://doi.org/10.7554/eLife.59996

  163. Hoevenaar-Blom, M. P., Spijkerman, A. M., Kromhout, D., van den Berg, J. F., & Verschuren, W. M. (2011). Sleep duration and sleep quality in relation to 12-year cardiovascular disease incidence: The MORGEN study. Sleep, 34(11), 1487–1492. https://doi.org/10.5665/sleep.1382

    Article  PubMed  PubMed Central  Google Scholar 

  164. Suchecki, D., & Tufik, S. (2000). Social stability attenuates the stress in the modified multiple platform method for paradoxical sleep deprivation in the rat. Physiology & Behavior, 68(3), 309–316. https://doi.org/10.1016/s0031-9384(99)00181-x

    Article  CAS  Google Scholar 

  165. De Lorenzo, B. H., de Oliveira Marchioro, L., Greco, C. R., & Suchecki, D. (2015). Sleep-deprivation reduces NK cell number and function mediated by β-adrenergic signalling. Psychoneuroendocrinology, 57, 134–143. https://doi.org/10.1016/j.psyneuen.2015.04.006

    Article  CAS  PubMed  Google Scholar 

  166. Sousa, M. E. P., Gonzatti, M. B., Fernandes, E. R., Freire, B. M., Guereschi, M. G., Basso, A. S., et al. (2020). Invariant natural killer T cells resilience to paradoxical sleep deprivation-associated stress. Brain, Behavior, and Immunity, 90, 208–215. https://doi.org/10.1016/j.bbi.2020.08.018

    Article  CAS  PubMed  Google Scholar 

  167. Zielinski, M. R., Davis, J. M., Fadel, J. R., & Youngstedt, S. D. (2012). Influence of chronic moderate sleep restriction and exercise on inflammation and carcinogenesis in mice. Brain, Behavior, and Immunity, 26(4), 672–679. https://doi.org/10.1016/j.bbi.2012.03.002

    Article  PubMed  PubMed Central  Google Scholar 

  168. Huang, J., Song, P., Hang, K., Chen, Z., Zhu, Z., Zhang, Y., et al. (2021). Sleep deprivation disturbs immune surveillance and promotes the progression of hepatocellular carcinoma. Frontiers in Immunology, 12, 727959. https://doi.org/10.3389/fimmu.2021.727959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. De Lorenzo, B. H. P., Novaes, E. B. R. R., Paslar Leal, T., Piqueira Garcia, N., Martins Dos Santos, R. M., Alvares-Saraiva, A. M., et al. (2018). Chronic sleep restriction impairs the antitumor immune response in mice. NeuroImmunoModulation, 25(2), 59–67. https://doi.org/10.1159/000490352

    Article  CAS  PubMed  Google Scholar 

  170. Kaushal, N., Ramesh, V., & Gozal, D. (2012). Human apolipoprotein E4 targeted replacement in mice reveals increased susceptibility to sleep disruption and intermittent hypoxia. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 303(1), R19-29. https://doi.org/10.1152/ajpregu.00025.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Hakim, F., Wang, Y., Zhang, S. X., Zheng, J., Yolcu, E. S., Carreras, A., et al. (2014). Fragmented sleep accelerates tumor growth and progression through recruitment of tumor-associated macrophages and TLR4 signaling. Cancer Research, 74(5), 1329–1337. https://doi.org/10.1158/0008-5472.Can-13-3014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Capri, K. M., Maroni, M. J., Deane, H. V., Concepcion, H. A., DeCourcey, H., Logan, R. W., et al. (2019). Male C57BL6/N and C57BL6/J mice respond differently to constant light and running-wheel access. Frontiers in Behavioral Neuroscience, 13, 268. https://doi.org/10.3389/fnbeh.2019.00268

    Article  PubMed  PubMed Central  Google Scholar 

  173. Khroyan, T. V., Zhang, J., Yang, L., Zou, B., Xie, J., Pascual, C., et al. (2012). Rodent motor and neuropsychological behaviour measured in home cages using the integrated modular platform SmartCage™. Clinical and Experimental Pharmacology and Physiology, 39(7), 614–622. https://doi.org/10.1111/j.1440-1681.2012.05719.x

    Article  CAS  PubMed  Google Scholar 

  174. Hicks, J. A., Hatzidis, A., Arruda, N. L., Gelineau, R. R., De Pina, I. M., Adams, K. W., et al. (2016). Voluntary wheel-running attenuates insulin and weight gain and affects anxiety-like behaviors in C57BL6/J mice exposed to a high-fat diet. Behavioural Brain Research, 310, 1–10. https://doi.org/10.1016/j.bbr.2016.04.051

    Article  CAS  PubMed  Google Scholar 

  175. Bevins, R. A., & Besheer, J. (2006). Object recognition in rats and mice: A one-trial non-matching-to-sample learning task to study ‘recognition memory.’ Nature Protocols, 1(3), 1306–1311. https://doi.org/10.1038/nprot.2006.205

    Article  PubMed  Google Scholar 

  176. McCarthy, M. J., & Welsh, D. K. (2012). Cellular circadian clocks in mood disorders. Journal of Biological Rhythms, 27(5), 339–352. https://doi.org/10.1177/0748730412456367

    Article  CAS  PubMed  Google Scholar 

  177. Filipski, E., Delaunay, F., King, V. M., Wu, M. W., Claustrat, B., Gréchez-Cassiau, A., et al. (2004). Effects of chronic jet lag on tumor progression in mice. Cancer Research, 64(21), 7879–7885. https://doi.org/10.1158/0008-5472.Can-04-0674

    Article  CAS  PubMed  Google Scholar 

  178. Shimizu, K., Iyoda, T., Okada, M., Yamasaki, S., & Fujii, S. I. (2018). Immune suppression and reversal of the suppressive tumor microenvironment. International Immunology, 30(10), 445–454. https://doi.org/10.1093/intimm/dxy042

    Article  CAS  PubMed  Google Scholar 

  179. Wang, Y., Ding, Y., Guo, N., & Wang, S. (2019). MDSCs: Key criminals of tumor pre-metastatic niche formation. Frontiers in Immunology, 10, 172. https://doi.org/10.3389/fimmu.2019.00172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Nguyen, K. D., Fentress, S. J., Qiu, Y., Yun, K., Cox, J. S., & Chawla, A. (2013). Circadian gene Bmal1 regulates diurnal oscillations of Ly6C(hi) inflammatory monocytes. Science, 341(6153), 1483–1488. https://doi.org/10.1126/science.1240636

    Article  CAS  PubMed  Google Scholar 

  181. Silver, A. C., Arjona, A., Hughes, M. E., Nitabach, M. N., & Fikrig, E. (2012). Circadian expression of clock genes in mouse macrophages, dendritic cells, and B cells. Brain, Behavior, and Immunity, 26(3), 407–413. https://doi.org/10.1016/j.bbi.2011.10.001

    Article  CAS  PubMed  Google Scholar 

  182. Ella, K., Csépányi-Kömi, R., & Káldi, K. (2016). Circadian regulation of human peripheral neutrophils. Brain, Behavior, and Immunity, 57, 209–221. https://doi.org/10.1016/j.bbi.2016.04.016

    Article  CAS  PubMed  Google Scholar 

  183. Baumann, A., Gönnenwein, S., Bischoff, S. C., Sherman, H., Chapnik, N., Froy, O., et al. (2013). The circadian clock is functional in eosinophils and mast cells. Immunology, 140(4), 465–474. https://doi.org/10.1111/imm.12157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Hemmers, S., & Rudensky, A. Y. (2015). The cell-intrinsic circadian clock is dispensable for lymphocyte differentiation and function. Cell Reports, 11(9), 1339–1349. https://doi.org/10.1016/j.celrep.2015.04.058

    Article  CAS  PubMed  Google Scholar 

  185. Scheiermann, C., Gibbs, J., Ince, L., & Loudon, A. (2018). Clocking in to immunity. Nature Reviews Immunology, 18(7), 423–437. https://doi.org/10.1038/s41577-018-0008-4

    Article  CAS  PubMed  Google Scholar 

  186. de Assis, L. V. M., Kinker, G. S., Moraes, M. N., Markus, R. P., Fernandes, P. A., & Castrucci, A. M. L. (2018). Expression of the circadian clock gene BMAL1 positively correlates with antitumor immunity and patient survival in metastatic melanoma. Frontiers in Oncology, 8, 185. https://doi.org/10.3389/fonc.2018.00185

    Article  PubMed  PubMed Central  Google Scholar 

  187. Wang, X., Li, Y., Fu, J., Zhou, K., & Wang, T. (2021). ARNTL2 is a prognostic biomarker and correlates with immune cell infiltration in triple-negative breast cancer. Pharmgenomics Pers Med, 14, 1425–1440. https://doi.org/10.2147/pgpm.S331431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Curtis, A. M., Fagundes, C. T., Yang, G., Palsson-McDermott, E. M., Wochal, P., McGettrick, A. F., et al. (2015). Circadian control of innate immunity in macrophages by miR-155 targeting Bmal1. Proc Natl Acad Sci U S A, 112(23), 7231–7236. https://doi.org/10.1073/pnas.1501327112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. He, F., Ru, X., & Wen, T. (2020). NRF2, a transcription factor for stress response and beyond. Int J Mol Sci, 21(13). https://doi.org/10.3390/ijms21134777

  190. Gowda, P., Lathoria, K., Sharma, S., Patrick, S., Umdor, S. B., & Sen, E. (2021). Rewiring of lactate-Interleukin-1β autoregulatory loop with clock-Bmal1: A feed-forward circuit in glioma. Molecular and Cellular Biology, 41(9), e0044920. https://doi.org/10.1128/mcb.00449-20

    Article  CAS  PubMed  Google Scholar 

  191. Early, J. O., Menon, D., Wyse, C. A., Cervantes-Silva, M. P., Zaslona, Z., Carroll, R. G., et al. (2018). Circadian clock protein BMAL1 regulates IL-1β in macrophages via NRF2. Proc Natl Acad Sci U S A, 115(36), E8460-e8468. https://doi.org/10.1073/pnas.1800431115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Shaashua, L., Mayer, S., Lior, C., Lavon, H., Novoselsky, A., & Scherz-Shouval, R. (2020). Stromal expression of the core clock gene period 2 is essential for tumor initiation and metastatic colonization. Front Cell Dev Biol, 8, 587697. https://doi.org/10.3389/fcell.2020.587697

    Article  PubMed  PubMed Central  Google Scholar 

  193. Lee, I. K., Song, H., Kim, H., Kim, I. S., Tran, N. L., Kim, S. H., et al. (2020). RORα regulates cholesterol metabolism of CD8(+) T cells for anticancer immunity. Cancers (Basel), 12(7). https://doi.org/10.3390/cancers12071733

  194. Sato, S., Sakurai, T., Ogasawara, J., Takahashi, M., Izawa, T., Imaizumi, K., et al. (2014). A circadian clock gene, Rev-erbα, modulates the inflammatory function of macrophages through the negative regulation of Ccl2 expression. The Journal of Immunology, 192(1), 407–417. https://doi.org/10.4049/jimmunol.1301982

    Article  CAS  PubMed  Google Scholar 

  195. Lam, M. T., Cho, H., Lesch, H. P., Gosselin, D., Heinz, S., Tanaka-Oishi, Y., et al. (2013). Rev-Erbs repress macrophage gene expression by inhibiting enhancer-directed transcription. Nature, 498(7455), 511–515. https://doi.org/10.1038/nature12209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Hams, E., Roberts, J., Bermingham, R., & Fallon, P. G. (2021). Functions for retinoic acid-related orphan receptor alpha (RORα) in the activation of macrophages during lipopolysaccharide-induced septic shock. Frontiers in Immunology, 12, 647329. https://doi.org/10.3389/fimmu.2021.647329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Yu, X., Rollins, D., Ruhn, K. A., Stubblefield, J. J., Green, C. B., Kashiwada, M., et al. (2013). TH17 cell differentiation is regulated by the circadian clock. Science, 342(6159), 727–730. https://doi.org/10.1126/science.1243884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Hu, X., Liu, X., Moisan, J., Wang, Y., Lesch, C. A., Spooner, C., et al. (2016). Synthetic RORγ agonists regulate multiple pathways to enhance antitumor immunity. Oncoimmunology, 5(12), e1254854. https://doi.org/10.1080/2162402x.2016.1254854

    Article  PubMed  PubMed Central  Google Scholar 

  199. Perfilyeva, Y. V., Abdolla, N., Ostapchuk, Y. O., Tleulieva, R., Krasnoshtanov, V. C., & Belyaev, N. N. (2017). Expansion of CD11b(+)Ly6G(high) and CD11b(+)CD49d(+) myeloid cells with suppressive potential in mice with chronic inflammation and light-at-night-induced circadian disruption. Inflammation Research, 66(8), 711–724. https://doi.org/10.1007/s00011-017-1052-4

    Article  CAS  PubMed  Google Scholar 

  200. Ebihara, S., Marks, T., Hudson, D. J., & Menaker, M. (1986). Genetic control of melatonin synthesis in the pineal gland of the mouse. Science, 231(4737), 491–493. https://doi.org/10.1126/science.3941912

    Article  CAS  PubMed  Google Scholar 

  201. Cheon, D. J., & Orsulic, S. (2011). Mouse models of cancer. Annual Review of Pathology: Mechanisms of Disease, 6, 95–119. https://doi.org/10.1146/annurev.pathol.3.121806.154244

    Article  CAS  Google Scholar 

  202. Maser, R. S., Choudhury, B., Campbell, P. J., Feng, B., Wong, K. K., Protopopov, A., et al. (2007). Chromosomally unstable mouse tumours have genomic alterations similar to diverse human cancers. Nature, 447(7147), 966–971. https://doi.org/10.1038/nature05886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Jennings, C. G., Landman, R., Zhou, Y., Sharma, J., Hyman, J., Movshon, J. A., et al. (2016). Opportunities and challenges in modeling human brain disorders in transgenic primates. Nature Neuroscience, 19(9), 1123–1130. https://doi.org/10.1038/nn.4362

    Article  CAS  PubMed  Google Scholar 

  204. Howe, K., Clark, M. D., Torroja, C. F., Torrance, J., Berthelot, C., Muffato, M., et al. (2013). The zebrafish reference genome sequence and its relationship to the human genome. Nature, 496(7446), 498–503. https://doi.org/10.1038/nature12111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. White, R., Rose, K., & Zon, L. (2013). Zebrafish cancer: The state of the art and the path forward. Nature Reviews Cancer, 13(9), 624–636. https://doi.org/10.1038/nrc3589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Basti, A., Fior, R., Yalҫin, M., Póvoa, V., Astaburuaga, R., Li, Y., et al. (2020). The core-clock gene NR1D1 impacts cell motility in vitro and invasiveness in a zebrafish xenograft colon cancer model. Cancers (Basel), 12(4). https://doi.org/10.3390/cancers12040853

  207. Hamilton, N., Diaz-de-Cerio, N., & Whitmore, D. (2015). Impaired light detection of the circadian clock in a zebrafish melanoma model. Cell Cycle, 14(8), 1232–1241. https://doi.org/10.1080/15384101.2015.1014146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Mure, L. S., Le, H. D., Benegiamo, G., Chang, M. W., Rios, L., Jillani, N., et al. (2018). Diurnal transcriptome atlas of a primate across major neural and peripheral tissues. Science, 359(6381). https://doi.org/10.1126/science.aao0318

  209. Qiu, P., Jiang, J., Liu, Z., Cai, Y., Huang, T., Wang, Y., et al. (2019). BMAL1 knockout macaque monkeys display reduced sleep and psychiatric disorders. National Science Review, 6(1), 87–100. https://doi.org/10.1093/nsr/nwz002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Mukherji, A., Bailey, S. M., Staels, B., & Baumert, T. F. (2019). The circadian clock and liver function in health and disease. Journal of Hepatology, 71(1), 200–211. https://doi.org/10.1016/j.jhep.2019.03.020

    Article  PubMed  PubMed Central  Google Scholar 

  211. Takahashi, J. S. (2017). Transcriptional architecture of the mammalian circadian clock. Nature Reviews Genetics, 18(3), 164–179. https://doi.org/10.1038/nrg.2016.150

    Article  CAS  PubMed  Google Scholar 

  212. Tao, L., Yu, H., Liang, R., Jia, R., Wang, J., Jiang, K., et al. (2019). Rev-erbα inhibits proliferation by reducing glycolytic flux and pentose phosphate pathway in human gastric cancer cells. Oncogenesis, 8(10), 57. https://doi.org/10.1038/s41389-019-0168-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Wang, X., Wang, N., Wei, X., Yu, H., & Wang, Z. (2018). REV-ERBα reduction is associated with clinicopathological features and prognosis in human gastric cancer. Oncology Letters, 16(2), 1499–1506. https://doi.org/10.3892/ol.2018.8809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Sulli, G., Rommel, A., Wang, X., Kolar, M. J., Puca, F., Saghatelian, A., et al. (2018). Pharmacological activation of REV-ERBs is lethal in cancer and oncogene-induced senescence. Nature, 553(7688), 351–355. https://doi.org/10.1038/nature25170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Dong, Z., Zhang, G., Qu, M., Gimple, R. C., Wu, Q., Qiu, Z., et al. (2019). Targeting glioblastoma stem cells through disruption of the circadian clock. Cancer Discovery, 9(11), 1556–1573. https://doi.org/10.1158/2159-8290.Cd-19-0215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Shen, W., Zhang, W., Ye, W., Wang, H., Zhang, Q., Shen, J., et al. (2020). SR9009 induces a REV-ERB dependent anti-small-cell lung cancer effect through inhibition of autophagy. Theranostics, 10(10), 4466–4480. https://doi.org/10.7150/thno.42478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Wang, Y., Kojetin, D., & Burris, T. P. (2015). Anti-proliferative actions of a synthetic REV-ERBα/β agonist in breast cancer cells. Biochemical Pharmacology, 96(4), 315–322. https://doi.org/10.1016/j.bcp.2015.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Trump, R. P., Bresciani, S., Cooper, A. W., Tellam, J. P., Wojno, J., Blaikley, J., et al. (2013). Optimized chemical probes for REV-ERBα. Journal of Medicinal Chemistry, 56(11), 4729–4737. https://doi.org/10.1021/jm400458q

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Chen, Z., Yoo, S. H., & Takahashi, J. S. (2013). Small molecule modifiers of circadian clocks. Cellular and Molecular Life Sciences, 70(16), 2985–2998. https://doi.org/10.1007/s00018-012-1207-y

    Article  CAS  PubMed  Google Scholar 

  220. He, B., Nohara, K., Park, N., Park, Y. S., Guillory, B., Zhao, Z., et al. (2016). The small molecule nobiletin targets the molecular oscillator to enhance circadian rhythms and protect against metabolic syndrome. Cell Metabolism, 23(4), 610–621. https://doi.org/10.1016/j.cmet.2016.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Goh, J. X. H., Tan, L. T., Goh, J. K., Chan, K. G., Pusparajah, P., Lee, L. H., et al. (2019). Nobiletin and derivatives: Functional compounds from citrus fruit peel for colon cancer chemoprevention. Cancers (Basel), 11(6). https://doi.org/10.3390/cancers11060867

  222. Turdo, A., Glaviano, A., Pepe, G., Calapà, F., Raimondo, S., Fiori, M. E., et al. (2021). Nobiletin and xanthohumol sensitize colorectal cancer stem cells to standard chemotherapy. Cancers (Basel), 13(16). https://doi.org/10.3390/cancers13163927

  223. Guney Eskiler, G., Deveci, A. O., Bilir, C., & Kaleli, S. (2019). Synergistic effects of nobiletin and sorafenib combination on metastatic prostate cancer cells. Nutrition and Cancer, 71(8), 1299–1312. https://doi.org/10.1080/01635581.2019.1601237

    Article  CAS  PubMed  Google Scholar 

  224. Moon, J. Y., Cho, M., Ahn, K. S., & Cho, S. K. (2013). Nobiletin induces apoptosis and potentiates the effects of the anticancer drug 5-fluorouracil in p53-mutated SNU-16 human gastric cancer cells. Nutrition and Cancer, 65(2), 286–295. https://doi.org/10.1080/01635581.2013.756529

    Article  CAS  PubMed  Google Scholar 

  225. Feng, S. L., Tian, Y., Huo, S., Qu, B., Liu, R. M., Xu, P., et al. (2020). Nobiletin potentiates paclitaxel anticancer efficacy in A549/T xenograft model: Pharmacokinetic and pharmacological study. Phytomedicine, 67, 153141. https://doi.org/10.1016/j.phymed.2019.153141

    Article  CAS  PubMed  Google Scholar 

  226. Uesato, S., Yamashita, H., Maeda, R., Hirata, Y., Yamamoto, M., Matsue, S., et al. (2014). Synergistic antitumor effect of a combination of paclitaxel and carboplatin with nobiletin from Citrus depressa on non-small-cell lung cancer cell lines. Planta Medica, 80(6), 452–457. https://doi.org/10.1055/s-0034-1368321

    Article  CAS  PubMed  Google Scholar 

  227. Wu, X., Song, M., Qiu, P., Rakariyatham, K., Li, F., Gao, Z., et al. (2017). Synergistic chemopreventive effects of nobiletin and atorvastatin on colon carcinogenesis. Carcinogenesis, 38(4), 455–464. https://doi.org/10.1093/carcin/bgx018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Li, N., Zhang, Z., Jiang, G., Sun, H., & Yu, D. (2019). Nobiletin sensitizes colorectal cancer cells to oxaliplatin by PI3K/Akt/MTOR pathway. Front Biosci (Landmark Ed), 24(2), 303–312. https://doi.org/10.2741/4719

    Article  PubMed  Google Scholar 

  229. Yang, J., Yang, Y., Wang, L., Jin, Q., & Pan, M. (2020). Nobiletin selectively inhibits oral cancer cell growth by promoting apoptosis and DNA damage in vitro. Oral Surgery, Oral Medicine, Oral Pathology, and Oral Radiology, 130(4), 419–427. https://doi.org/10.1016/j.oooo.2020.06.020

    Article  PubMed  Google Scholar 

  230. Liu, J., Wang, S., Tian, S., He, Y., Lou, H., Yang, Z., et al. (2018). Nobiletin inhibits breast cancer via p38 mitogen-activated protein kinase, nuclear transcription factor-κB, and nuclear factor erythroid 2-related factor 2 pathways in MCF-7 cells. Food Nutr Res, 62. https://doi.org/10.29219/fnr.v62.1323

  231. Chen, C., Ono, M., Takeshima, M., & Nakano, S. (2014). Antiproliferative and apoptosis-inducing activity of nobiletin against three subtypes of human breast cancer cell lines. Anticancer Research, 34(4), 1785–1792.

    CAS  PubMed  Google Scholar 

  232. Morley, K. L., Ferguson, P. J., & Koropatnick, J. (2007). Tangeretin and nobiletin induce G1 cell cycle arrest but not apoptosis in human breast and colon cancer cells. Cancer Letters, 251(1), 168–178. https://doi.org/10.1016/j.canlet.2006.11.016

    Article  CAS  PubMed  Google Scholar 

  233. Jiang, Y. P., Guo, H., & Wang, X. B. (2018). Nobiletin (NOB) suppresses autophagic degradation via over-expressing AKT pathway and enhances apoptosis in multidrug-resistant SKOV3/TAX ovarian cancer cells. Biomedicine & Pharmacotherapy, 103, 29–37. https://doi.org/10.1016/j.biopha.2018.03.126

    Article  CAS  Google Scholar 

  234. Deveci Ozkan, A., Kaleli, S., Onen, H. I., Sarihan, M., Guney Eskiler, G., Kalayci Yigin, A., et al. (2020). Anti-inflammatory effects of nobiletin on TLR4/TRIF/IRF3 and TLR9/IRF7 signaling pathways in prostate cancer cells. Immunopharmacology and Immunotoxicology, 42(2), 93–100. https://doi.org/10.1080/08923973.2020.1725040

    Article  CAS  PubMed  Google Scholar 

  235. Chen, J., Creed, A., Chen, A. Y., Huang, H., Li, Z., Rankin, G. O., et al. (2014). Nobiletin suppresses cell viability through AKT pathways in PC-3 and DU-145 prostate cancer cells. BMC Pharmacology and Toxicology, 15, 59. https://doi.org/10.1186/2050-6511-15-59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Sun, Y., Han, Y., Song, M., Charoensinphon, N., Zheng, J., Qiu, P., et al. (2019). Inhibitory effects of nobiletin and its major metabolites on lung tumorigenesis. Food & Function, 10(11), 7444–7452. https://doi.org/10.1039/c9fo01966a

    Article  CAS  Google Scholar 

  237. Luo, G., Guan, X., & Zhou, L. (2008). Apoptotic effect of citrus fruit extract nobiletin on lung cancer cell line A549 in vitro and in vivo. Cancer Biology & Therapy, 7(6), 966–973. https://doi.org/10.4161/cbt.7.6.5967

    Article  CAS  Google Scholar 

  238. Lellupitiyage Don, S. S., Robertson, K. L., Lin, H. H., Labriola, C., Harrington, M. E., Taylor, S. R., et al. (2020). Nobiletin affects circadian rhythms and oncogenic characteristics in a cell-dependent manner. PLoS ONE, 15(7), e0236315. https://doi.org/10.1371/journal.pone.0236315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Wang, Y., Solt, L. A., Kojetin, D. J., & Burris, T. P. (2012). Regulation of p53 stability and apoptosis by a ROR agonist. PLoS ONE, 7(4), e34921. https://doi.org/10.1371/journal.pone.0034921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Brożyna, A. A., Kim, T. K., Zabłocka, M., Jóźwicki, W., Yue, J., Tuckey, R. C., et al. (2020). Association among vitamin D, retinoic acid-related orphan receptors, and vitamin D hydroxyderivatives in ovarian cancer. Nutrients, 12(11). https://doi.org/10.3390/nu12113541

  241. Wang, J., Zou, J. X., Xue, X., Cai, D., Zhang, Y., Duan, Z., et al. (2016). ROR-γ drives androgen receptor expression and represents a therapeutic target in castration-resistant prostate cancer. Nature Medicine, 22(5), 488–496. https://doi.org/10.1038/nm.4070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Liu, X., Zawidzka, E. M., Li, H., Lesch, C. A., Dunbar, J., Bousley, D., et al. (2019). RORγ agonists enhance the sustained antitumor activity through intrinsic Tc17 cytotoxicity and Tc1 recruitment. Cancer Immunology Research, 7(7), 1054–1063. https://doi.org/10.1158/2326-6066.Cir-18-0714

    Article  CAS  PubMed  Google Scholar 

  243. Chang, M. R., Dharmarajan, V., Doebelin, C., Garcia-Ordonez, R. D., Novick, S. J., Kuruvilla, D. S., et al. (2016). Synthetic RORγt agonists enhance protective immunity. ACS Chemical Biology, 11(4), 1012–1018. https://doi.org/10.1021/acschembio.5b00899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Mahalingam, D., Wang, J. S., Hamilton, E. P., Sarantopoulos, J., Nemunaitis, J., Weems, G., et al. (2019). Phase 1 open-label, multicenter study of first-in-class RORγ agonist LYC-55716 (Cintirorgon): Safety, tolerability, and preliminary evidence of antitumor activity. Clinical Cancer Research, 25(12), 3508–3516. https://doi.org/10.1158/1078-0432.Ccr-18-3185

    Article  CAS  PubMed  Google Scholar 

  245. Hirota, T., Lee, J. W., St John, P. C., Sawa, M., Iwaisako, K., Noguchi, T., et al. (2012). Identification of small molecule activators of cryptochrome. Science, 337(6098), 1094–1097. https://doi.org/10.1126/science.1223710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Chun, S. K., Chung, S., Kim, H. D., Lee, J. H., Jang, J., Kim, J., et al. (2015). A synthetic cryptochrome inhibitor induces anti-proliferative effects and increases chemosensitivity in human breast cancer cells. Biochemical and Biophysical Research Communications, 467(2), 441–446. https://doi.org/10.1016/j.bbrc.2015.09.103

    Article  CAS  PubMed  Google Scholar 

  247. Fulcher, L. J., & Sapkota, G. P. (2020). Functions and regulation of the serine/threonine protein kinase CK1 family: Moving beyond promiscuity. The Biochemical Journal, 477(23), 4603–4621. https://doi.org/10.1042/bcj20200506

    Article  CAS  PubMed  Google Scholar 

  248. Hirota, T., Lee, J. W., Lewis, W. G., Zhang, E. E., Breton, G., Liu, X., et al. (2010). High-throughput chemical screen identifies a novel potent modulator of cellular circadian rhythms and reveals CKIα as a clock regulatory kinase. PLoS Biology, 8(12), e1000559. https://doi.org/10.1371/journal.pbio.1000559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Janovská, P., Normant, E., Miskin, H., & Bryja, V. (2020). Targeting casein kinase 1 (CK1) in hematological cancers. Int J Mol Sci, 21(23). https://doi.org/10.3390/ijms21239026

  250. Shen, C., Nayak, A., Melendez, R. A., Wynn, D. T., Jackson, J., Lee, E., et al. (2020). Casein kinase 1α as a regulator of Wnt-driven cancer. Int J Mol Sci, 21(16). https://doi.org/10.3390/ijms21165940

  251. Rosenberg, L. H., Lafitte, M., Quereda, V., Grant, W., Chen, W., Bibian, M., et al. (2015). Therapeutic targeting of casein kinase 1δ in breast cancer. Sci Transl Med, 7(318), 318ra202. https://doi.org/10.1126/scitranslmed.aac8773

  252. Bibian, M., Rahaim, R. J., Choi, J. Y., Noguchi, Y., Schürer, S., Chen, W., et al. (2013). Development of highly selective casein kinase 1δ/1ε (CK1δ/ε) inhibitors with potent antiproliferative properties. Bioorganic & Medicinal Chemistry Letters, 23(15), 4374–4380. https://doi.org/10.1016/j.bmcl.2013.05.075

    Article  CAS  Google Scholar 

  253. Minzel, W., Venkatachalam, A., Fink, A., Hung, E., Brachya, G., Burstain, I., et al. (2018). Small molecules co-targeting CKIα and the transcriptional kinases CDK7/9 control AML in preclinical models. Cell, 175(1), 171-185.e125. https://doi.org/10.1016/j.cell.2018.07.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the members from the Academy of Integrative Medicine for the helpful discussions. We apologize to the scientists whose work could not be cited in this review due to space limitations.

Funding

This work was supported by the National Science Foundation of China (82172947 to F.H.).

Author information

Authors and Affiliations

Authors

Contributions

YW, HDG, and FH conceived the structure of the manuscript and revised the manuscript. YW wrote the manuscript and made the figures. HDG and FH reviewed and edited the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Haidong Guo or Feng He.

Ethics declarations

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Guo, H. & He, F. Circadian disruption: from mouse models to molecular mechanisms and cancer therapeutic targets. Cancer Metastasis Rev 42, 297–322 (2023). https://doi.org/10.1007/s10555-022-10072-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-022-10072-0

Keywords