Skip to main content

Advertisement

Log in

Impact of posttranslational modifications in pancreatic carcinogenesis and treatments

  • Non-Thematic Review
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Pancreatic cancer (PC) is a highly aggressive cancer, with a 9% 5-year survival rate and a high risk of recurrence. In part, this is because PC is composed of heterogeneous subgroups with different biological and functional characteristics and personalized anticancer treatments are required. Posttranslational modifications (PTMs) play an important role in modifying protein functions/roles and are required for the maintenance of cell viability and biological processes; thus, their dysregulation can lead to disease. Different types of PTMs increase the functional diversity of the proteome, which subsequently influences most aspects of normal cell biology or pathogenesis. This review primarily focuses on ubiquitination, SUMOylation, and NEDDylation, as well as the current understanding of their roles and molecular mechanisms in pancreatic carcinogenesis. Additionally, we briefly summarize studies and clinical trials on PC treatments to advance our knowledge of drugs available to target the ubiquitination, SUMOylation, and NEDDylation PTM types. Further investigation of PTMs could be a critical field of study in relation to PC, as they have been implicated in the initiation and progression of many other types of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Siegel, R. L., Miller, K. D., & Jemal, A. (2019). Cancer statistics, 2019. CA A Cancer Journal for Clinicians, 69(1), 7–34. https://doi.org/10.3322/caac.21551

    Article  PubMed  Google Scholar 

  2. Real, F. X. (2003). A “catastrophic hypothesis” for pancreas cancer progression. Gastroenterology, 124(7), 1958–1964. https://doi.org/10.1016/s0016-5085(03)00389-5

    Article  PubMed  Google Scholar 

  3. Srivastava, S., Koay, E. J., Borowsky, A. D., De Marzo, A. M., Ghosh, S., Wagner, P. D., et al. (2019). Cancer overdiagnosis: A biological challenge and clinical dilemma. Nature Reviews Cancer, 19(6), 349–358. https://doi.org/10.1038/s41568-019-0142-8

    Article  CAS  PubMed  Google Scholar 

  4. Miller, K. D., Nogueira, L., Mariotto, A. B., Rowland, J. H., Yabroff, K. R., Alfano, C. M., et al. (2019). Cancer treatment and survivorship statistics, 2019. CA A Cancer Journal for Clinicians, 69(5), 363–385. https://doi.org/10.3322/caac.21565

    Article  PubMed  Google Scholar 

  5. van Huijgevoort, N. C. M., Del Chiaro, M., Wolfgang, C. L., van Hooft, J. E., & Besselink, M. G. (2019). Diagnosis and management of pancreatic cystic neoplasms: Current evidence and guidelines. Nature Reviews. Gastroenterology & Hepatology, 16(11), 676–689. https://doi.org/10.1038/s41575-019-0195-x

    Article  Google Scholar 

  6. Pan, S., Brentnall, T. A., & Chen, R. (2020). Proteome alterations in pancreatic ductal adenocarcinoma. Canc Letters, 469, 429–436. https://doi.org/10.1016/j.canlet.2019.11.020

    Article  CAS  Google Scholar 

  7. Basturk, O., Hong, S. M., Wood, L. D., Adsay, N. V., Albores-Saavedra, J., Biankin, A. V., et al. (2015). A revised classification system and recommendations from the Baltimore Consensus Meeting for Neoplastic Precursor Lesions in the Pancreas. American Journal of Surgical Pathology, 39(12), 1730–1741. https://doi.org/10.1097/PAS.0000000000000533

    Article  Google Scholar 

  8. Bonacci, T., Roignot, J., & Soubeyran, P. (2010). Protein ubiquitylation in pancreatic cancer. Scientific World Journal, 10, 1462–1472. https://doi.org/10.1100/tsw.2010.133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Prevot, P. P., Simion, A., Grimont, A., Colletti, M., Khalaileh, A., Van den Steen, G., et al. (2012). Role of the ductal transcription factors HNF6 and Sox9 in pancreatic acinar-to-ductal metaplasia. Gut, 61(12), 1723–1732. https://doi.org/10.1136/gutjnl-2011-300266

    Article  CAS  PubMed  Google Scholar 

  10. Morita, K., Mito, K., Niki, T., & Fukushima, N. (2018). Is an atypical flat lesion (AFL) a precursor lesion of the pancreatic ductal adenocarcinoma in human? Pathology International. https://doi.org/10.1111/pin.12670

    Article  PubMed  Google Scholar 

  11. Lee, L. S., Doyle, L. A., Jeffrey, H., Sachin, S., Bellizzi, A. M., Szafranska-Schwarzbach, A. E., et al. (2014). Differential expression of GNAS and KRAS mutations in pancreatic cysts. Journal of the Pancreas, 15(6), 581–586.

    PubMed  Google Scholar 

  12. Marks, P., Rifkind, R. A., Richon, V. M., Breslow, R., Miller, T., & Kelly, W. K. (2001). Histone deacetylases and cancer: Causes and therapies. Nature Reviews Cancer, 1(3), 194–202. https://doi.org/10.1038/35106079

    Article  CAS  PubMed  Google Scholar 

  13. Lu, C., Paschall, A. V., Shi, H., Savage, N., Waller, J. L., Sabbatini, M. E., et al. (2017). The MLL1-H3K4me3 axis-mediated PD-L1 expression and pancreatic cancer immune evasion. J Natl Canc Inst, 109(6), djw283, doi:https://doi.org/10.1093/jnci/djw283.

  14. Hsu, J. M., Li, C. W., Lai, Y. J., & Hung, M. C. (2018). Posttranslational modifications of PD-L1 and their applications in cancer therapy. Cancer Research, 78(22), 6349–6353. https://doi.org/10.1158/0008-5472.CAN-18-1892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Herrmann, F., Pably, P., Eckerich, C., Bedford, M. T., & Fackelmayer, F. O. (2009). Human protein arginine methyltransferases in vivo–Distinct properties of eight canonical members of the PRMT family. Journal of Cell Science, 122(Pt 5), 667–677. https://doi.org/10.1242/jcs.039933

    Article  CAS  PubMed  Google Scholar 

  16. Paik, W. K., Farooqui, J. Z., & Kim, S. (1981). Protein methylation: Cytochrome c methylation as a model system. Advances in Enzyme Regulation, 19, 471–486. https://doi.org/10.1016/0065-2571(81)90029-7

    Article  CAS  Google Scholar 

  17. Bedford, M. T. (2007). Arginine methylation at a glance. [Research Support, N.I.H., Extramural Review]. J Cell Sci, 120(Pt 24), 4243–4246, doi:https://doi.org/10.1242/jcs.019885.

  18. Katz, J. E., Dlakic, M., & Clarke, S. (2003). Automated identification of putative methyltransferases from genomic open reading frames. Molecular and Cellular Proteomics, 2(8), 525–540. https://doi.org/10.1074/mcp.M300037-MCP200

    Article  CAS  PubMed  Google Scholar 

  19. Gromyko, D., Arnesen, T., Ryningen, A., Varhaug, J. E., & Lillehaug, J. R. (2010). Depletion of the human Nalpha-terminal acetyltransferase A induces p53-dependent apoptosis and p53-independent growth inhibition. International Journal of Cancer, 127(12), 2777–2789. https://doi.org/10.1002/ijc.25275

    Article  CAS  PubMed  Google Scholar 

  20. Er, J. L., Goh, P. N., Lee, C. Y., Tan, Y. J., Hii, L. W., Mai, C. W., et al. (2018). Identification of inhibitors synergizing gemcitabine sensitivity in the squamous subtype of pancreatic ductal adenocarcinoma (PDAC). Apoptosis, 23(5–6), 343–355. https://doi.org/10.1007/s10495-018-1459-6

    Article  CAS  PubMed  Google Scholar 

  21. Bailey, P., Chang, D. K., Nones, K., Johns, A. L., Patch, A. M., Gingras, M. C., et al. (2016). Genomic analyses identify molecular subtypes of pancreatic cancer. Nature, 531(7592), 47–52. https://doi.org/10.1038/nature16965

    Article  CAS  PubMed  Google Scholar 

  22. Bernassola, F., Chillemi, G., & Melino, G. (2019). HECT-type E3 ubiquitin ligases in cancer. Trends in Biochemical Sciences, 44(12), 1057–1075. https://doi.org/10.1016/j.tibs.2019.08.004

    Article  CAS  PubMed  Google Scholar 

  23. Liu, Y., Ao, X., Ding, W., Ponnusamy, M., Wu, W., Hao, X., et al. (2018). Critical role of FOXO3a in carcinogenesis. Mol Canc, 17(1), 104. https://doi.org/10.1186/s12943-018-0856-3

    Article  CAS  Google Scholar 

  24. Han, Z. J., Feng, Y. H., Gu, B. H., Li, Y. M., & Chen, H. (2018). The post-translational modification, SUMOylation, and cancer (Review). International Journal of Oncology, 52(4), 1081–1094. https://doi.org/10.3892/ijo.2018.4280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gallo, M., De Luca, A., Lamura, L., & Normanno, N. (2012). Zoledronic acid blocks the interaction between mesenchymal stem cells and breast cancer cells: Implications for adjuvant therapy of breast cancer. Annals of Oncology, 23(3), 597–604. https://doi.org/10.1093/annonc/mdr159

    Article  CAS  PubMed  Google Scholar 

  26. Zeng, X., Liu, C., Yao, J., Wan, H., Wan, G., Li, Y., et al. (2021). Breast cancer stem cells, heterogeneity, targeting therapies and therapeutic implications. Pharmacological Research, 163, 105320. https://doi.org/10.1016/j.phrs.2020.105320

    Article  CAS  PubMed  Google Scholar 

  27. Ciechanover, A. (2005). Proteolysis: From the lysosome to ubiquitin and the proteasome. Nature Reviews Molecular Cell Biology, 6(1), 79–87. https://doi.org/10.1038/nrm1552

    Article  CAS  PubMed  Google Scholar 

  28. Wang, Y. C., Peterson, S. E., & Loring, J. F. (2014). Protein post-translational modifications and regulation of pluripotency in human stem cells. Cell Research, 24(2), 143–160. https://doi.org/10.1038/cr.2013.151

    Article  CAS  PubMed  Google Scholar 

  29. Ye, Y., & Rape, M. (2009). Building ubiquitin chains: E2 enzymes at work. Nature Reviews Molecular Cell Biology, 10(11), 755–764. https://doi.org/10.1038/nrm2780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen, C., & Matesic, L. E. (2007). The Nedd4-like family of E3 ubiquitin ligases and cancer. Cancer and Metastasis Reviews, 26(3–4), 587–604. https://doi.org/10.1007/s10555-007-9091-x

    Article  CAS  PubMed  Google Scholar 

  31. Pickart, C. M., & Fushman, D. (2004). Polyubiquitin chains: Polymeric protein signals. Current Opinion in Chemical Biology, 8(6), 610–616. https://doi.org/10.1016/j.cbpa.2004.09.009

    Article  CAS  PubMed  Google Scholar 

  32. Komander, D., Clague, M. J., & Urbe, S. (2009). Breaking the chains: Structure and function of the deubiquitinases. Nature Reviews Molecular Cell Biology, 10(8), 550–563. https://doi.org/10.1038/nrm2731

    Article  CAS  PubMed  Google Scholar 

  33. Nijman, S. M., Luna-Vargas, M. P., Velds, A., Brummelkamp, T. R., Dirac, A. M., Sixma, T. K., et al. (2005). A genomic and functional inventory of deubiquitinating enzymes. Cell, 123(5), 773–786. https://doi.org/10.1016/j.cell.2005.11.007

    Article  CAS  PubMed  Google Scholar 

  34. Harrigan, J. A., Jacq, X., Martin, N. M., & Jackson, S. P. (2018). Deubiquitylating enzymes and drug discovery: Emerging opportunities. Nature Reviews. Drug Discovery, 17(1), 57–78. https://doi.org/10.1038/nrd.2017.152

    Article  CAS  PubMed  Google Scholar 

  35. Yang, G., & Yang, X. (2010). Smad4-mediated TGF-beta signaling in tumorigenesis. International Journal of Biological Sciences, 6(1), 1–8. https://doi.org/10.7150/ijbs.6.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xu, J., & Attisano, L. (2000). Mutations in the tumor suppressors Smad2 and Smad4 inactivate transforming growth factor beta signaling by targeting Smads to the ubiquitin-proteasome pathway. Proceedings of the National academy of Sciences of the United States of America, 97(9), 4820–4825. https://doi.org/10.1073/pnas.97.9.4820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wan, M., Huang, J., Jhala, N. C., Tytler, E. M., Yang, L., Vickers, S. M., et al. (2005). SCF(beta-TrCP1) controls Smad4 protein stability in pancreatic cancer cells. American Journal of Pathology, 166(5), 1379–1392. https://doi.org/10.1016/s0002-9440(10)62356-5

    Article  CAS  Google Scholar 

  38. Romero, D., Iglesias, M., Vary, C. P., & Quintanilla, M. (2008). Functional blockade of Smad4 leads to a decrease in beta-catenin levels and signaling activity in human pancreatic carcinoma cells. Carcinog, 29(5), 1070–1076. https://doi.org/10.1093/carcin/bgn054

    Article  CAS  Google Scholar 

  39. Zboralski, D., Warscheid, B., Klein-Scory, S., Malas, M. B., Becker, H., Bockmann, M., et al. (2010). Uncoupled responses of Smad4-deficient cancer cells to TNFalpha result in secretion of monomeric laminin-gamma2. Molecular Cancer, 9(1), 65. https://doi.org/10.1186/1476-4598-9-65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xu, P., Lin, X., & Feng, X. H. (2016). Posttranslational regulation of Smads. Cold Spring Harb Perspect Biol, 8(12), https://doi.org/10.1101/cshperspect.a022087.

  41. Li, C. W., Lim, S. O., Xia, W., Lee, H. H., Chan, L. C., Kuo, C. W., et al. (2016). Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nature Communications, 7, 12632. https://doi.org/10.1038/ncomms12632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tanaka, T., Li, T. S., Urata, Y., Goto, S., Ono, Y., Kawakatsu, M., et al. (2015). Increased expression of PHD3 represses the HIF-1 signaling pathway and contributes to poor neovascularization in pancreatic ductal adenocarcinoma. Journal of Gastroenterology, 50(9), 975–983. https://doi.org/10.1007/s00535-014-1030-3

    Article  CAS  PubMed  Google Scholar 

  43. Nakayama, K., Qi, J., & Ronai, Z. (2009). The ubiquitin ligase Siah2 and the hypoxia response. Molecular Cancer Research, 7(4), 443–451. https://doi.org/10.1158/1541-7786.MCR-08-0458

    Article  CAS  PubMed  Google Scholar 

  44. Schmidt, R. L., Park, C. H., Ahmed, A. U., Gundelach, J. H., Reed, N. R., Cheng, S., et al. (2007). Inhibition of RAS-mediated transformation and tumorigenesis by targeting the downstream E3 ubiquitin ligase seven in absentia homologue. Cancer Research, 67(24), 11798–11810. https://doi.org/10.1158/0008-5472.CAN-06-4471

    Article  CAS  PubMed  Google Scholar 

  45. Caba, O., Irigoyen, A., Jimenez-Luna, C., Benavides, M., Ortuno, F. M., Gallego, J., et al. (2016). Identification of gene expression profiling associated with erlotinib-related skin toxicity in pancreatic adenocarcinoma patients. Toxicology and Applied Pharmacology, 311, 113–116. https://doi.org/10.1016/j.taap.2016.10.003

    Article  CAS  PubMed  Google Scholar 

  46. Wu, W., Liu, X., Wei, L., Li, T., Zang, Y., Qian, Y., et al. (2018). Tp53 mutation inhibits ubiquitination and degradation of WISP1 via down-regulation of siah1 in pancreatic carcinogenesis. Frontiers in Pharmacology, 9, 857. https://doi.org/10.3389/fphar.2018.00857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen, X., Zheng, P., Xue, Z., Li, J., Wang, W., Chen, X., et al. (2013). CacyBP/SIP enhances multidrug resistance of pancreatic cancer cells by regulation of P-gp and Bcl-2. Apoptosis, 18(7), 861–869. https://doi.org/10.1007/s10495-013-0831-9

    Article  CAS  PubMed  Google Scholar 

  48. Tomasini, R., Samir, A. A., Vaccaro, M. I., Pebusque, M. J., Dagorn, J. C., Iovanna, J. L., et al. (2001). Molecular and functional characterization of the stress-induced protein (SIP) gene and its two transcripts generated by alternative splicing. SIP induced by stress and promotes cell death. J Biol Chem, 276(47), 44185–44192, https://doi.org/10.1074/jbc.M105647200.

  49. Chen, X., Han, G., Zhai, H., Zhang, F., Wang, J., Li, X., et al. (2008). Expression and clinical significance of CacyBP/SIP in pancreatic cancer. Pancreatol, 8(4–5), 470–477. https://doi.org/10.1159/000151774

    Article  CAS  Google Scholar 

  50. Blanco, F. F., Jimbo, M., Wulfkuhle, J., Gallagher, I., Deng, J., Enyenihi, L., et al. (2016). The mRNA-binding protein HuR promotes hypoxia-induced chemoresistance through posttranscriptional regulation of the proto-oncogene PIM1 in pancreatic cancer cells. Oncogene, 35(19), 2529–2541. https://doi.org/10.1038/onc.2015.325

    Article  CAS  PubMed  Google Scholar 

  51. Shaw, A. Y., Henderson, M. C., Flynn, G., Samulitis, B., Han, H., Stratton, S. P., et al. (2009). Characterization of novel diaryl oxazole-based compounds as potential agents to treat pancreatic cancer. Journal of Pharmacology and Experimental Therapeutics, 331(2), 636–647. https://doi.org/10.1124/jpet.109.156406

    Article  CAS  Google Scholar 

  52. dos Remedios, C. G., Chhabra, D., Kekic, M., Dedova, I. V., Tsubakihara, M., Berry, D. A., et al. (2003). Actin binding proteins: Regulation of cytoskeletal microfilaments. Physiological Reviews, 83(2), 433–473. https://doi.org/10.1152/physrev.00026.2002

    Article  PubMed  Google Scholar 

  53. Ni, X. G., Zhou, L., Wang, G. Q., Liu, S. M., Bai, X. F., Liu, F., et al. (2008). The ubiquitin-proteasome pathway mediates gelsolin protein downregulation in pancreatic cancer. Molecular Medicine, 14(9–10), 582–589. https://doi.org/10.2119/2008-00020.Ni

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Taniuchi, K., Furihata, M., Naganuma, S., Dabanaka, K., Hanazaki, K., & Saibara, T. (2016). Podocalyxin-like protein, linked to poor prognosis of pancreatic cancers, promotes cell invasion by binding to gelsolin. Cancer Science, 107(10), 1430–1442. https://doi.org/10.1111/cas.13018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Verma, A., Guha, S., Wang, H., Fok, J. Y., Koul, D., Abbruzzese, J., et al. (2008). Tissue transglutaminase regulates focal adhesion kinase/AKT activation by modulating PTEN expression in pancreatic cancer cells. Clinical Cancer Research, 14(7), 1997–2005. https://doi.org/10.1158/1078-0432.CCR-07-1533

    Article  CAS  PubMed  Google Scholar 

  56. Jin, X., Yang, C., Fan, P., Xiao, J., Zhang, W., Zhan, S., et al. (2017). CDK5/FBW7-dependent ubiquitination and degradation of EZH2 inhibits pancreatic cancer cell migration and invasion. Journal of Biological Chemistry, 292(15), 6269–6280. https://doi.org/10.1074/jbc.M116.764407

    Article  CAS  Google Scholar 

  57. Li, J. A., Kuang, T., Pu, N., Fang, Y., Han, X., Zhang, L., et al. (2019). TRAF6 regulates YAP signaling by promoting the ubiquitination and degradation of MST1 in pancreatic cancer. Clinical and Experimental Medicine, 19(2), 211–218. https://doi.org/10.1007/s10238-018-00543-6

    Article  CAS  PubMed  Google Scholar 

  58. Tan, P., Xu, Y., Du, Y., Wu, L., Guo, B., Huang, S., et al. (2019). SPOP suppresses pancreatic cancer progression by promoting the degradation of NANOG. Cell Death & Disease, 10(11), 794. https://doi.org/10.1038/s41419-019-2017-z

    Article  CAS  Google Scholar 

  59. Zhang, Q., Meng, Y., Zhang, L., Chen, J., & Zhu, D. (2009). RNF13: A novel RING-type ubiquitin ligase over-expressed in pancreatic cancer. Cell Research, 19(3), 348–357. https://doi.org/10.1038/cr.2008.285

    Article  CAS  PubMed  Google Scholar 

  60. Hanoun, N., Fritsch, S., Gayet, O., Gigoux, V., Cordelier, P., Dusetti, N., et al. (2014). The E3 ubiquitin ligase thyroid hormone receptor-interacting protein 12 targets pancreas transcription factor 1a for proteasomal degradation. Journal of Biological Chemistry, 289(51), 35593–35604. https://doi.org/10.1074/jbc.M114.620104

    Article  CAS  Google Scholar 

  61. Kadera, B. E., Toste, P. A., Wu, N., Li, L., Nguyen, A. H., Dawson, D. W., et al. (2015). Low expression of the E3 ubiquitin ligase CBL confers chemoresistance in human pancreatic cancer and is targeted by epidermal growth factor receptor inhibition. Clinical Cancer Research, 21(1), 157–165. https://doi.org/10.1158/1078-0432.CCR-14-0610

    Article  CAS  PubMed  Google Scholar 

  62. Wang, H., Chen, Y., Lin, P., Li, L., Zhou, G., Liu, G., et al. (2014). The CUL7/F-box and WD repeat domain containing 8 (CUL7/Fbxw8) ubiquitin ligase promotes degradation of hematopoietic progenitor kinase 1. Journal of Biological Chemistry, 289(7), 4009–4017. https://doi.org/10.1074/jbc.M113.520106

    Article  CAS  Google Scholar 

  63. Grant, T. J., Hua, K., & Singh, A. (2016). Molecular pathogenesis of pancreatic cancer. Progress in Molecular Biology and Translational Science, 144, 241–275. https://doi.org/10.1016/bs.pmbts.2016.09.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhang, Q., Zhang, Y., Parsels, J. D., Lohse, I., Lawrence, T. S., Pasca di Magliano, M., et al. (2016). Fbxw7 deletion accelerates Kras(G12D)-driven pancreatic tumorigenesis via yap accumulation. Neoplasia, 18(11), 666–673. https://doi.org/10.1016/j.neo.2016.08.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ma, Y., Gu, Y., Zhang, Q., Han, Y., Yu, S., Lu, Z., et al. (2013). Targeted degradation of KRAS by an engineered ubiquitin ligase suppresses pancreatic cancer cell growth in vitro and in vivo. Molecular Cancer Therapeutics, 12(3), 286–294. https://doi.org/10.1158/1535-7163.MCT-12-0650

    Article  CAS  PubMed  Google Scholar 

  66. Ji, S., Qin, Y., Shi, S., Liu, X., Hu, H., Zhou, H., et al. (2015). ERK kinase phosphorylates and destabilizes the tumor suppressor FBW7 in pancreatic cancer. Cell Research, 25(5), 561–573. https://doi.org/10.1038/cr.2015.30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sugita, H., Kaneki, M., Furuhashi, S., Hirota, M., Takamori, H., & Baba, H. (2010). Nitric oxide inhibits the proliferation and invasion of pancreatic cancer cells through degradation of insulin receptor substrate-1 protein. Molecular Cancer Research, 8(8), 1152–1163. https://doi.org/10.1158/1541-7786.MCR-09-0472

    Article  CAS  PubMed  Google Scholar 

  68. Kouvaraki, M. A., Korapati, A. L., Rassidakis, G. Z., Tian, L., Zhang, Q., Chiao, P., et al. (2006). Potential role of Jun activation domain-binding protein 1 as a negative regulator of p27kip1 in pancreatic adenocarcinoma. Cancer Research, 66(17), 8581–8589. https://doi.org/10.1158/0008-5472.CAN-06-0975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Su, C. H., Zhao, R., Zhang, F., Qu, C., Chen, B., Feng, Y. H., et al. (2011). 14–3-3sigma exerts tumor-suppressor activity mediated by regulation of COP1 stability. Cancer Research, 71(3), 884–894. https://doi.org/10.1158/0008-5472.CAN-10-2518

    Article  CAS  PubMed  Google Scholar 

  70. Liu, M., Zhong, J., Zeng, Z., Huang, K., Ye, Z., Deng, S., et al. (2019). Hypoxia-induced feedback of HIF-1alpha and lncRNA-CF129 contributes to pancreatic cancer progression through stabilization of p53 protein. Theranostics, 9(16), 4795–4810. https://doi.org/10.7150/thno.30988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. He, J., Li, F., Zhou, Y., Hou, X., Liu, S., Li, X., et al. (2020). LncRNA XLOC_006390 promotes pancreatic carcinogenesis and glutamate metabolism by stabilizing c-Myc. Cancer Letters, 469, 419–428. https://doi.org/10.1016/j.canlet.2019.11.021

    Article  CAS  PubMed  Google Scholar 

  72. Zheng, J., Huang, X., Tan, W., Yu, D., Du, Z., Chang, J., et al. (2016). Pancreatic cancer risk variant in LINC00673 creates a miR-1231 binding site and interferes with PTPN11 degradation. Nature Genetics, 48(7), 747–757. https://doi.org/10.1038/ng.3568

    Article  CAS  PubMed  Google Scholar 

  73. Mao, L., Le, S., Jin, X., Liu, G., Chen, J., & Hu, J. (2019). CSN5 promotes the invasion and metastasis of pancreatic cancer by stabilization of FOXM1. Experimental Cell Research, 374(2), 274–281. https://doi.org/10.1016/j.yexcr.2018.10.012

    Article  CAS  PubMed  Google Scholar 

  74. Liu, L., Yao, D., Zhang, P., Ding, W., Zhang, X., Zhang, C., et al. (2017). Deubiquitinase USP9X promotes cell migration, invasion and inhibits apoptosis of human pancreatic cancer. Oncology Reports, 38(6), 3531–3537. https://doi.org/10.3892/or.2017.6050

    Article  CAS  PubMed  Google Scholar 

  75. Ma, T., Chen, W., Zhi, X., Liu, H., Zhou, Y., Chen, B. W., et al. (2018). USP9X inhibition improves gemcitabine sensitivity in pancreatic cancer by inhibiting autophagy. Cancer Letters, 436, 129–138. https://doi.org/10.1016/j.canlet.2018.08.010

    Article  CAS  PubMed  Google Scholar 

  76. Zhu, C., Ji, X., Zhang, H., Zhou, Q., Cao, X., Tang, M., et al. (2018). Deubiquitylase USP9X suppresses tumorigenesis by stabilizing large tumor suppressor kinase 2 (LATS2) in the Hippo pathway. Journal of Biological Chemistry, 293(4), 1178–1191. https://doi.org/10.1074/jbc.RA117.000392

    Article  CAS  Google Scholar 

  77. Song, Z., Li, J., Zhang, L., Deng, J., Fang, Z., Xiang, X., et al. (2019). UCHL3 promotes pancreatic cancer progression and chemo-resistance through FOXM1 stabilization. American Journal of Cancer Research, 9(9), 1970–1981.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Lambies, G., Miceli, M., Martinez-Guillamon, C., Olivera-Salguero, R., Pena, R., Frias, C. P., et al. (2019). TGFbeta-activated USP27X deubiquitinase regulates cell migration and chemoresistance via stabilization of snail1. Cancer Research, 79(1), 33–46. https://doi.org/10.1158/0008-5472.CAN-18-0753

    Article  CAS  PubMed  Google Scholar 

  79. Hou, P., Ma, X., Zhang, Q., Wu, C. J., Liao, W., Li, J., et al. (2019). USP21 deubiquitinase promotes pancreas cancer cell stemness via Wnt pathway activation. Genes & Development, 33(19–20), 1361–1366. https://doi.org/10.1101/gad.326314.119

    Article  CAS  Google Scholar 

  80. Flotho, A., & Melchior, F. (2013). Sumoylation: A regulatory protein modification in health and disease. Annual Review of Biochemistry, 82, 357–385. https://doi.org/10.1146/annurev-biochem-061909-093311

    Article  CAS  PubMed  Google Scholar 

  81. Kunz, K., Piller, T., & Muller, S. (2018). SUMO-specific proteases and isopeptidases of the SENP family at a glance. Journal of Cell Science, 131(6), https://doi.org/10.1242/jcs.211904.

  82. Zhao, X. (2018). SUMO-mediated regulation of nuclear functions and signaling processes. Molecular Cell, 71(3), 409–418. https://doi.org/10.1016/j.molcel.2018.07.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hu, C., & Jiang, X. (2019). The SUMO-specific protease family regulates cancer cell radiosensitivity. Biomedicine & Pharmacotherapy, 109, 66–70. https://doi.org/10.1016/j.biopha.2018.10.071

    Article  CAS  Google Scholar 

  84. Onishi, S., & Kataoka, K. (2019). PIASy is a SUMOylation-independent negative regulator of the insulin transactivator MafA. Journal of Molecular Endocrinology, 63(4), 297–308. https://doi.org/10.1530/JME-19-0172

    Article  CAS  PubMed  Google Scholar 

  85. Mo, Y. Y., & Moschos, S. J. (2005). Targeting Ubc9 for cancer therapy. Expert Opinion on Therapeutic Targets, 9(6), 1203–1216. https://doi.org/10.1517/14728222.9.6.1203

    Article  CAS  PubMed  Google Scholar 

  86. Debernardi, S., Massat, N. J., Radon, T. P., Sangaralingam, A., Banissi, A., Ennis, D. P., et al. (2015). Noninvasive urinary miRNA biomarkers for early detection of pancreatic adenocarcinoma. American Journal of Cancer Research, 5(11), 3455–3466.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Liao, X., Wang, X., Huang, K., Yang, C., Yu, T., Han, C., et al. (2018). Genome-scale analysis to identify prognostic microRNA biomarkers in patients with early stage pancreatic ductal adenocarcinoma after pancreaticoduodenectomy. Canc Manag Res, 10, 2537–2551. https://doi.org/10.2147/CMAR.S168351

    Article  CAS  Google Scholar 

  88. Mohiuddin, M., Evans, T. J., Rahman, M. M., Keka, I. S., Tsuda, M., Sasanuma, H., et al. (2018). SUMOylation of PCNA by PIAS1 and PIAS4 promotes template switch in the chicken and human B cell lines. Proceedings of the National academy of Sciences of the United States of America, 115(50), 12793–12798. https://doi.org/10.1073/pnas.1716349115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chien, W., Lee, K. L., Ding, L. W., Wuensche, P., Kato, H., Doan, N. B., et al. (2013). PIAS4 is an activator of hypoxia signalling via VHL suppression during growth of pancreatic cancer cells. Br J Canc, 109(7), 1795–1804. https://doi.org/10.1038/bjc.2013.531

    Article  CAS  Google Scholar 

  90. Swayden, M., Alzeeb, G., Masoud, R., Berthois, Y., Audebert, S., Camoin, L., et al. (2019). PML hyposumoylation is responsible for the resistance of pancreatic cancer. The FASEB Journal, 33(11), 12447–12463. https://doi.org/10.1096/fj.201901091R

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Abascal, F., Tress, M. L., & Valencia, A. (2015). Alternative splicing and co-option of transposable elements: The case of TMPO/LAP2alpha and ZNF451 in mammals. Bioinformatics, 31(14), 2257–2261. https://doi.org/10.1093/bioinformatics/btv132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Eisenhardt, N., Chaugule, V. K., Koidl, S., Droescher, M., Dogan, E., Rettich, J., Sutinen, P., Imanishi, S. Y., Hofmann, K., Palvimo, J. J., et al. (2015). A new vertebrate SUMO enzyme family reveals insights into SUMO-chain assembly. Nature Structural & Molecular Biology, 22, 959–967. https://doi.org/10.1038/nsmb.3114

    Article  CAS  Google Scholar 

  93. Ma, C., Wu, B., Huang, X., Yuan, Z., Nong, K., Dong, B., et al. (2014). SUMO-specific protease 1 regulates pancreatic cancer cell proliferation and invasion by targeting MMP-9. Tumour Biology, 35(12), 12729–12735. https://doi.org/10.1007/s13277-014-2598-1

    Article  CAS  PubMed  Google Scholar 

  94. Bouchard, D. M., & Matunis, M. J. (2019). A cellular and bioinformatics analysis of the SENP1 SUMO isopeptidase in pancreatic cancer. Journal of Gastrointestinal Oncology, 10(5), 821–830. https://doi.org/10.21037/jgo.2019.05.09

    Article  PubMed  PubMed Central  Google Scholar 

  95. Wei, D., Li, H., Yu, J., Sebolt, J. T., Zhao, L., Lawrence, T. S., et al. (2012). Radiosensitization of human pancreatic cancer cells by MLN4924, an investigational NEDD8-activating enzyme inhibitor. Cancer Research, 72(1), 282–293. https://doi.org/10.1158/0008-5472.CAN-11-2866

    Article  CAS  PubMed  Google Scholar 

  96. Duncan, K., Schafer, G., Vava, A., Parker, M. I., & Zerbini, L. F. (2012). Targeting neddylation in cancer therapy. Future Oncology, 8(11), 1461–1470. https://doi.org/10.2217/fon.12.131

    Article  CAS  PubMed  Google Scholar 

  97. Xirodimas, D. P. (2008). Novel substrates and functions for the ubiquitin-like molecule NEDD8. Biochemical Society Transactions, 36(Pt 5), 802–806. https://doi.org/10.1042/BST0360802

    Article  CAS  PubMed  Google Scholar 

  98. Zhao, Y., Morgan, M. A., & Sun, Y. (2014). Targeting Neddylation pathways to inactivate cullin-RING ligases for anticancer therapy. Antioxidants & Redox Signaling, 21(17), 2383–2400. https://doi.org/10.1089/ars.2013.5795

    Article  CAS  Google Scholar 

  99. Weng, M., Luo, Z. L., Wu, X. L., & Zeng, W. Z. (2017). The E3 ubiquitin ligase NEDD4 is translationally upregulated and facilitates pancreatic cancer. Oncotarget, 8(12), 20288–20296. https://doi.org/10.18632/oncotarget.15446

    Article  PubMed  PubMed Central  Google Scholar 

  100. Liu, P. Y., Xu, N., Malyukova, A., Scarlett, C. J., Sun, Y. T., Zhang, X. D., et al. (2013). The histone deacetylase SIRT2 stabilizes Myc oncoproteins. Cell Death and Differentiation, 20(3), 503–514. https://doi.org/10.1038/cdd.2012.147

    Article  CAS  PubMed  Google Scholar 

  101. Ye, X., Wang, L., Shang, B., Wang, Z., & Wei, W. (2014). NEDD4: A promising target for cancer therapy. Current Cancer Drug Targets, 14(6), 549–556. https://doi.org/10.2174/1568009614666140725092430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kovacevic, Z., Chikhani, S., Lui, G. Y., Sivagurunathan, S., & Richardson, D. R. (2013). The iron-regulated metastasis suppressor NDRG1 targets NEDD4L, PTEN, and SMAD4 and inhibits the PI3K and Ras signaling pathways. Antioxidants & Redox Signaling, 18(8), 874–887. https://doi.org/10.1089/ars.2011.4273

    Article  CAS  Google Scholar 

  103. Soucy, T. A., Smith, P. G., Milhollen, M. A., Berger, A. J., Gavin, J. M., Adhikari, S., et al. (2009). An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature, 458(7239), 732–736. https://doi.org/10.1038/nature07884

    Article  CAS  PubMed  Google Scholar 

  104. Brownell, J. E., Sintchak, M. D., Gavin, J. M., Liao, H., Bruzzese, F. J., Bump, N. J., et al. (2010). Substrate-assisted inhibition of ubiquitin-like protein-activating enzymes: The NEDD8 E1 inhibitor MLN4924 forms a NEDD8-AMP mimetic in situ. Molecular Cell, 37(1), 102–111. https://doi.org/10.1016/j.molcel.2009.12.024

    Article  CAS  PubMed  Google Scholar 

  105. Watson, I. R., Irwin, M. S., & Ohh, M. (2011). NEDD8 pathways in cancer, Sine Quibus Non Canc. Cell, 19(2), 168–176. https://doi.org/10.1016/j.ccr.2011.01.002

    Article  CAS  Google Scholar 

  106. Qin, G., Tu, X. Y., Li, H. B., Cao, P. B., Chen, X., Song, J., et al. (2020). Long noncoding RNA p53-stabilizing and activating RNA promotes p53 signaling by inhibiting heterogeneous nuclear ribonucleoprotein K deSUMOylation and Suppresses Hepatocellular Carcinoma. Hepatology, 71(1), 112–129. https://doi.org/10.1002/hep.30793

    Article  CAS  PubMed  Google Scholar 

  107. Abidi, N., & Xirodimas, D. P. (2015). Regulation of cancer-related pathways by protein NEDDylation and strategies for the use of NEDD8 inhibitors in the clinic. Endocr Relat Canc, 22(1), T55-70. https://doi.org/10.1530/ERC-14-0315

    Article  CAS  Google Scholar 

  108. Giroux, V., Iovanna, J., & Dagorn, J. C. (2006). Probing the human kinome for kinases involved in pancreatic cancer cell survival and gemcitabine resistance. The FASEB Journal, 20(12), 1982–1991. https://doi.org/10.1096/fj.06-6239com

    Article  CAS  PubMed  Google Scholar 

  109. Ubersax, J. A., & Ferrell, J. E., Jr. (2007). Mechanisms of specificity in protein phosphorylation. Nature Reviews Molecular Cell Biology, 8(7), 530–541. https://doi.org/10.1038/nrm2203

    Article  CAS  PubMed  Google Scholar 

  110. Johnson, L. N. (2009). The regulation of protein phosphorylation. Biochemical Society Transactions, 37(Pt 4), 627–641. https://doi.org/10.1042/BST0370627

    Article  CAS  PubMed  Google Scholar 

  111. O’Leary, C. E., Lewis, E. L., & Oliver, P. M. (2015). Ubiquitylation as a Rheostat for TCR Signaling: From targeted approaches toward global profiling. Frontiers in Immunology, 6, 618. https://doi.org/10.3389/fimmu.2015.00618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Sun, Y. P., Zhu, Q. D., Yang, W. J., Shan, Y. F., Yu, Z. P., Zhang, Q. Y., & Wu, H. H. (2019). LncRNA H19/miR-194/PFTK1 axis modulates the cell proliferation and migration of pancreatic cancer. Journal of Cellular Biochemistry, 120(3), 3874–3886. https://doi.org/10.1002/jcb.27669

    Article  CAS  PubMed  Google Scholar 

  113. Zhang, M. T., Zhao, Y., Zhang, Y. L., Wang, D. W., Gu, S. M., Feng, W., Peng, W. X., Gong, A. H., & Xu, M. (2018). LncRNA UCA1 promotes migration and invasion in pancreatic cancer cells via the hippo pathway. Biochimica et Biophysica Acta-Molecular Basis of Disease, 1864(5), 1770–1782. https://doi.org/10.1016/j.bbadis.2018.03.005

    Article  CAS  PubMed  Google Scholar 

  114. Bridwell-Rabb, J., Grell, T. A. J., & Drennan, C. L. (2018). A rich man, poor man story of S-adenosylmethionine and cobalamin revisited. Annual Review of Biochemistry, 87, 555–584. https://doi.org/10.1146/annurev-biochem-062917-012500

    Article  CAS  PubMed  Google Scholar 

  115. Bottiglieri, T. (2002). S-adenosyl-l-methionine (SAMe): From the bench to the bedside—Molecular basis of a pleiotrophic molecule. Amer J Clin Nutr, 76(5), 1151S-1157S. https://doi.org/10.1093/ajcn/76.5.1151S

    Article  CAS  PubMed  Google Scholar 

  116. Varier, R. A., & Timmers, H. T. M. (2011). Histone lysine methylation and demethylation pathways in cancer. BBA-Rev Canc, 1815(1), 75–89. https://doi.org/10.1016/j.bbcan.2010.10.002

    Article  CAS  Google Scholar 

  117. Su, X., Wellen, K. E., & Rabinowitz, J. D. (2016). Metabolic control of methylation and acetylation. Current Opinion in Chemical Biology, 30, 52–60. https://doi.org/10.1016/j.cbpa.2015.10.030

    Article  CAS  PubMed  Google Scholar 

  118. Li, C. H., Xiao, Z., Tong, J. H., To, K. F., Fang, X., Cheng, A. S., & Chen, Y. (2017). EZH2 coupled with HOTAIR to silence microRNA-34a by the induction of heterochromatin formation in human pancreatic ductal adenocarcinoma. Int J Canc, 140(1), 120–129. https://doi.org/10.1002/ijc.30414

    Article  CAS  Google Scholar 

  119. Hirata, H., Hinoda, Y., Nakajima, K., Kawamoto, K., Kikuno, N., Ueno, K., et al. (2011). Wnt antagonist DKK1 acts as a tumor suppressor gene that induces apoptosis and inhibits proliferation in human renal cell carcinoma. Int J Canc., 128, 1793–1803. https://doi.org/10.1002/ijc.25507

    Article  CAS  Google Scholar 

  120. Choudhary, C., Kumar, C., Gnad, F., Nielsen, M. L., Rehman, M., Walther, T. C., et al. (2009). Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science, 325(5942), 834–840. https://doi.org/10.1126/science.1175371

    Article  CAS  PubMed  Google Scholar 

  121. Zhao, D., Zou, S. W., Liu, Y., Zhou, X., Mo, Y., Wang, P., et al. (2013). Lysine-5 acetylation negatively regulates lactate dehydrogenase A and is decreased in pancreatic cancer. Cancer Cell, 23(4), 464–476. https://doi.org/10.1016/j.ccr.2013.02.005

    Article  CAS  PubMed  Google Scholar 

  122. Zeng, Z., Xu, F. Y., Zheng, H., Cheng, P., Chen, Q. Y., Ye, Z., et al. (2019). LncRNA-MTA2TR functions as a promoter in pancreatic cancer via driving deacetylation-dependent accumulation of HIF-1α. Theranostics, 9(18), 5298–5314. https://doi.org/10.7150/thno.34559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Shore, S., Raraty, M. G., Ghaneh, P., & Neoptolemos, J. P. (2003). Review article: Chemotherapy for pancreatic cancer. Alimentary Pharmacology & Therapeutics, 18(11–12), 1049–1069. https://doi.org/10.1111/j.1365-2036.2003.01781.x

    Article  CAS  Google Scholar 

  124. McConkey, D. J., & Zhu, K. (2008). Mechanisms of proteasome inhibitor action and resistance in cancer. Drug Resist Updat, 11(4–5), 164–179. https://doi.org/10.1016/j.drup.2008.08.002

    Article  CAS  PubMed  Google Scholar 

  125. Nawrocki, S. T., Carew, J. S., Pino, M. S., Highshaw, R. A., Andtbacka, R. H., Dunner, K., Jr., et al. (2006). Aggresome disruption: A novel strategy to enhance bortezomib-induced apoptosis in pancreatic cancer cells. Cancer Research, 66(7), 3773–3781. https://doi.org/10.1158/0008-5472.CAN-05-2961

    Article  CAS  PubMed  Google Scholar 

  126. White, M. C., Schroeder, R. D., Zhu, K., Xiong, K., & McConkey, D. J. (2018). HRI-mediated translational repression reduces proteotoxicity and sensitivity to bortezomib in human pancreatic cancer cells. Oncogene, 37(32), 4413–4427. https://doi.org/10.1038/s41388-018-0227-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Huang, C., Lan, W., Fraunhoffer, N., Meilerman, A., Iovanna, J., & Santofimia-Castano, P. (2019). Dissecting the anticancer mechanism of trifluoperazine on pancreatic ductal adenocarcinoma. Cancers (Basel), 11(12), https://doi.org/10.3390/cancers11121869.

  128. Francois, R. A., Zhang, A., Husain, K., Wang, C., Hutchinson, S., Kongnyuy, M., et al. (2019). Vitamin E delta-tocotrienol sensitizes human pancreatic cancer cells to TRAIL-induced apoptosis through proteasome-mediated down-regulation of c-FLIPs. Cancer Cell Int, 19, 189. https://doi.org/10.1186/s12935-019-0876-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Wang, W., Qin, J. J., Voruganti, S., Wang, M. H., Sharma, H., Patil, S., et al. (2014). Identification of a new class of MDM2 inhibitor that inhibits growth of orthotopic pancreatic tumors in mice. Gastroenterology, 147(4), 893–902 e892, doi:https://doi.org/10.1053/j.gastro.2014.07.001.

  130. Bonacci, T., Audebert, S., Camoin, L., Baudelet, E., Bidaut, G., Garcia, M., et al. (2014). Identification of new mechanisms of cellular response to chemotherapy by tracking changes in post-translational modifications by ubiquitin and ubiquitin-like proteins. Journal of Proteome Research, 13(5), 2478–2494. https://doi.org/10.1021/pr401258d

    Article  CAS  PubMed  Google Scholar 

  131. Yang, C., Fan, P., Zhu, S., Yang, H., Jin, X., & Wu, H. (2018). 3F-Box protein 32 degrades ataxia telangiectasia and Rad3-related and regulates DNA damage response induced by gemcitabine in pancreatic cancer. Oncology Letters, 15(6), 8878–8884. https://doi.org/10.3892/ol.2018.8367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Song, L., Guo, J., Chang, R., Peng, X., Li, J., Xu, X., et al. (2018). LKB1 obliterates Snail stability and inhibits pancreatic cancer metastasis in response to metformin treatment. Cancer Science, 109(5), 1382–1392. https://doi.org/10.1111/cas.13591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Singh, S. K., Baumgart, S., Singh, G., Konig, A. O., Reutlinger, K., Hofbauer, L. C., et al. (2011). Disruption of a nuclear NFATc2 protein stabilization loop confers breast and pancreatic cancer growth suppression by zoledronic acid. Journal of Biological Chemistry, 286(33), 28761–28771. https://doi.org/10.1074/jbc.M110.197533

    Article  CAS  Google Scholar 

  134. Su, J., Zhou, X., Yin, X., Wang, L., Zhao, Z., Hou, Y., et al. (2017). The effects of curcumin on proliferation, apoptosis, invasion, and NEDD4 expression in pancreatic cancer. Biochemical Pharmacology, 140, 28–40. https://doi.org/10.1016/j.bcp.2017.05.014

    Article  CAS  PubMed  Google Scholar 

  135. Wang, X., Fang, Z., Wang, A., Luo, C., Cheng, X., & Lu, M. (2017). Lithium suppresses hedgehog signaling via promoting ITCH E3 ligase activity and Gli1-SUFU interaction in PDA cells. Frontiers in Pharmacology, 8, 820. https://doi.org/10.3389/fphar.2017.00820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Jayaraman, A. K., & Jayaraman, S. (2011). Increased level of exogenous zinc induces cytotoxicity and up-regulates the expression of the ZnT-1 zinc transporter gene in pancreatic cancer cells. Journal of Nutritional Biochemistry, 22(1), 79–88. https://doi.org/10.1016/j.jnutbio.2009.12.001

    Article  CAS  Google Scholar 

  137. Zhou, L., Jiang, Y., Luo, Q., Li, L., & Jia, L. (2019). Neddylation: A novel modulator of the tumor microenvironment. Molecular Cancer, 18(1), 77. https://doi.org/10.1186/s12943-019-0979-1

    Article  PubMed  PubMed Central  Google Scholar 

  138. Li, H., Zhou, W., Li, L., Wu, J., Liu, X., Zhao, L., et al. (2017). Inhibition of neddylation modification sensitizes pancreatic cancer cells to gemcitabine. Neoplasia, 19(6), 509–518. https://doi.org/10.1016/j.neo.2017.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Li, J. A., Song, C., Rong, Y., Kuang, T., Wang, D., Xu, X., et al. (2018). Chk1 inhibitor SCH 900776 enhances the antitumor activity of MLN4924 on pancreatic cancer. Cell Cycle, 17(2), 191–199. https://doi.org/10.1080/15384101.2017.1405194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Langdon, C. G., Platt, J. T., Means, R. E., Iyidogan, P., Mamillapalli, R., Klein, M., et al. (2017). Combinatorial screening of pancreatic adenocarcinoma reveals sensitivity to drug combinations including bromodomain inhibitor plus neddylation inhibitor. Molecular Cancer Therapeutics, 16(6), 1041–1053. https://doi.org/10.1158/1535-7163.MCT-16-0794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Zeng, Y., Iv, Y. S., Pan, Q. H., Zhou, Y. G., & Li, H. (2019). An overactive neddylation pathway serves as a therapeutic target and MLN4924 enhances the anticancer activity of cisplatin in pancreatic cancer. Oncology Letters, 18(3), 2724–2732. https://doi.org/10.3892/ol.2019.10596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Yao, W. T., Wu, J. F., Yu, G. Y., Wang, R., Wang, K., Li, L. H., et al. (2014). Suppression of tumor angiogenesis by targeting the protein neddylation pathway. Cell Death & Disease, 5, e1059. https://doi.org/10.1038/cddis.2014.21

    Article  CAS  Google Scholar 

  143. Narayanan, S., Cai, C. Y., Assaraf, Y. G., Guo, H. Q., Cui, Q., Wei, L., et al. (2020). Targeting the ubiquitin-proteasome pathway to overcome anti-cancer drug resistance. Drug Resist Updat, 48, 100663. https://doi.org/10.1016/j.drup.2019.100663

    Article  PubMed  Google Scholar 

  144. Damaskos, C., Garmpis, N., Karatzas, T., Nikolidakis, L., Kostakis, I. D., Garmpi, A., et al. (2015). Histone deacetylase (HDAC) inhibitors: Current evidence for therapeutic activities in pancreatic cancer. Anticanc Res, 35(6), 3129–3135.

    CAS  Google Scholar 

  145. Gilardini Montani, M. S., Granato, M., Santoni, C., Del Porto, P., Merendino, N., D’Orazi, G., et al. (2017). Histone deacetylase inhibitors VPA and TSA induce apoptosis and autophagy in pancreatic cancer cells. Cellular Oncology (Dordrecht), 40(2), 167–180. https://doi.org/10.1007/s13402-017-0314-z

    Article  CAS  Google Scholar 

  146. Koutsounas, I., Giaginis, C., Patsouris, E., & Theocharis, S. (2013). Current evidence for histone deacetylase inhibitors in pancreatic cancer. World Journal of Gastroenterology, 19(6), 813–828. https://doi.org/10.3748/wjg.v19.i6.813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Gahr, S., Ocker, M., Ganslmayer, M., Zopf, S., Okamoto, K., Hartl, A., et al. (2007). The combination of the histone-deacetylase inhibitor trichostatin A and gemcitabine induces inhibition of proliferation and increased apoptosis in pancreatic carcinoma cells. International Journal of Oncology, 31(3), 567–576.

    CAS  PubMed  Google Scholar 

  148. Lee, S., Shinji, C., Ogura, K., Shimizu, M., Maeda, S., Sato, M., et al. (2007). Design, synthesis, and evaluation of isoindolinone-hydroxamic acid derivatives as histone deacetylase (HDAC) inhibitors. Bioorganic & Medicinal Chemistry Letters, 17(17), 4895–4900. https://doi.org/10.1016/j.bmcl.2007.06.038

    Article  CAS  Google Scholar 

  149. Neureiter, D., Zopf, S., Leu, T., Dietze, O., Hauser-Kronberger, C., Hahn, E. G., et al. (2007). Apoptosis, proliferation and differentiation patterns are influenced by zebularine and SAHA in pancreatic cancer models. Scandinavian Journal of Gastroenterology, 42(1), 103–116. https://doi.org/10.1080/00365520600874198

    Article  CAS  PubMed  Google Scholar 

  150. Mullins, T. D., Kern, H. F., & Metzgar, R. S. (1991). Ultrastructural differentiation of sodium butyrate-treated human pancreatic adenocarcinoma cell lines. Pancreas, 6(5), 578–587. https://doi.org/10.1097/00006676-199109000-00012

    Article  CAS  PubMed  Google Scholar 

  151. Laschanzky, R. S., Humphrey, L. E., Ma, J., Smith, L. M., Enke, T. J., Shukla, S. K., et al. (2019). Selective inhibition of histone deacetylases 1/2/6 in combination with gemcitabine: A promising combination for pancreatic cancer therapy. Canc (Basel), 11(9), doi:https://doi.org/10.3390/cancers11091327.

  152. He, S., Dong, G., Li, Y., Wu, S., Wang, W., & Sheng, C. (2020). Potent dual BET/HDAC inhibitors for efficient treatment of pancreatic cancer. Angewandte Chemie (International ed. in English). https://doi.org/10.1002/anie.201915896

    Article  Google Scholar 

  153. Fricker, L. D. (2020). Proteasome inhibitor drugs. Annual Review of Pharmacology and Toxicology, 60, 457–476. https://doi.org/10.1146/annurev-pharmtox-010919-023603

    Article  CAS  PubMed  Google Scholar 

  154. Tundo, G. R., Sbardella, D., Santoro, A. M., Coletta, A., Oddone, F., Grasso, G., et al. (2020). The proteasome as a druggable target with multiple therapeutic potentialities: Cutting and non-cutting edges. Pharmacology & Therapeutics, 213, 107579. https://doi.org/10.1016/j.pharmthera.2020.107579

    Article  CAS  Google Scholar 

  155. Zajaczkowska, R., Kocot-Kepska, M., Leppert, W., Wrzosek, A., Mika, J., & Wordliczek, J. (2019). Mechanisms of chemotherapy-induced peripheral neuropathy. Int J Mol Sci, 20(6), doi:https://doi.org/10.3390/ijms20061451.

  156. Cengiz Seval, G., & Beksac, M. (2018). The safety of bortezomib for the treatment of multiple myeloma. Expert Opinion on Drug Safety, 17(9), 953–962. https://doi.org/10.1080/14740338.2018.1513487

    Article  CAS  PubMed  Google Scholar 

  157. Karki, K., Harishchandra, S., & Safe, S. (2018). Bortezomib targets Sp transcription factors in cancer cells. Molecular Pharmacology, 94(4), 1187–1196. https://doi.org/10.1124/mol.118.112797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Grapa, C. M., Mocan, T., Gonciar, D., Zdrehus, C., Mosteanu, O., Pop, T., et al. (2019). Epidermal growth factor receptor and its role in pancreatic cancer treatment mediated by nanoparticles. International Journal of Nanomedicine, 14, 9693–9706. https://doi.org/10.2147/IJN.S226628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Sette, G., Salvati, V., Mottolese, M., Visca, P., Gallo, E., Fecchi, K., et al. (2015). Tyr1068-phosphorylated epidermal growth factor receptor (EGFR) predicts cancer stem cell targeting by erlotinib in preclinical models of wild-type EGFR lung cancer. Cell Death & Disease, 6(8), e1850. https://doi.org/10.1038/cddis.2015.217

    Article  CAS  Google Scholar 

  160. Schultheis, B., Reuter, D., Ebert, M. P., Siveke, J., Kerkhoff, A., Berdel, W. E., et al. (2017). Gemcitabine combined with the monoclonal antibody nimotuzumab is an active first-line regimen in KRAS wildtype patients with locally advanced or metastatic pancreatic cancer: A multicenter, randomized phase IIb study. Annals of Oncology, 28(10), 2429–2435. https://doi.org/10.1093/annonc/mdx343

    Article  CAS  PubMed  Google Scholar 

  161. Poteet, E., Liu, D., Liang, Z., Van Buren, G., Chen, C., & Yao, Q. (2019). Mesothelin and TGF-alpha predict pancreatic cancer cell sensitivity to EGFR inhibitors and effective combination treatment with trametinib. PLoS ONE, 14(3), e0213294. https://doi.org/10.1371/journal.pone.0213294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Hu, B., Cai, H., Yang, S., Tu, J., Huang, X., & Chen, G. (2019). Berbamine enhances the efficacy of gefitinib by suppressing STAT3 signaling in pancreatic cancer cells. Oncotargets and Therapy, 12, 11437–11451. https://doi.org/10.2147/OTT.S223242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Cardin, D. B., Goff, L. W., Chan, E., Whisenant, J. G., Dan Ayers, G., Takebe, N., et al. (2018). Dual Src and EGFR inhibition in combination with gemcitabine in advanced pancreatic cancer: Phase I results: A phase I clinical trial. Investigational New Drugs, 36(3), 442–450. https://doi.org/10.1007/s10637-017-0519-z

    Article  CAS  PubMed  Google Scholar 

  164. Chen, Y. H., Kim, J. H., & Stallcup, M. R. (2005). GAC63, a GRIP1-dependent nuclear receptor coactivator. Molecular and Cellular Biology, 25(14), 5965. https://doi.org/10.1128/MCB.25.14.5965-5972.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Rosenfeld, M. G., Lunyak, V. V., & Glass, C. K. (2006). Sensors and signals: A coactivator/corepressor/epigenetic code for integrating signal-dependent programs of transcriptional response. Genes & Development, 20, 1405. https://doi.org/10.1101/gad.1424806

    Article  CAS  Google Scholar 

  166. Louet, J. F., Coste, A., Amazit, L., Tannour-Louet, M., Wu, R. C., Tsai, S. Y., Tsai, M. J., Auwerx, J., & O’Malley, B. W. (2006). Oncogenic steroid receptor coactivator-3 is a key regulator of the white adipogenic program. Proceedings of the National academy of Sciences of the United States of America, 103(47), 17868–17873. https://doi.org/10.1073/pnas.0608711103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Arimura, A., & vn Peer, M., Schroder, A. J., & Rothman, P. B. . (2004). The transcriptional co-activator p/CIP (NCoA-3) is up-regulated by STAT6 and serves as a positive regulator of transcriptional activation by STAT6. Journal of Biological Chemistry, 279(30), 31105–31112. https://doi.org/10.1074/jbc.M404428200

    Article  CAS  Google Scholar 

  168. Louie, M. C., Zou, J. X., Rabinovich, A., & Chen, H. W. (2004). ACTR/AIB1 functions as an E2F1 coactivator to promote breast cancer cell proliferation and antiestrogen resistance. Molecular and Cellular Biology, 24(12), 5157–5171. https://doi.org/10.1128/MCB.24.12.5157-5171.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Li, G., Heaton, J. H., & Gelehrter, T. D. (2006). Role of steroid receptor coactivators in glucocorticoid and transforming growth factor β regulation of plasminogen activator inhibitor gene expression. Molecular Endocrinology, 20(5), 1025–1034. https://doi.org/10.1210/me.2005-0145

    Article  CAS  PubMed  Google Scholar 

  170. Wu, H. Y., Hamamori, Y., Xu, J., Chang, S. C., Saluna, T., Chang, M. F., O’Malley, B. W., & Kedes, L. (2005). Nuclear hormone receptor coregulator GRIP1 suppresses, whereas SRC1A and p/CIP coactivate, by domain-specific binding of MyoD. Journal of Biological Chemistry, 280(5), 3129–3137. https://doi.org/10.1074/jbc.M412560200

    Article  CAS  Google Scholar 

  171. Li, S. S., & Shang, Y. F. (2007). Regulation of SRC family coactivators by post-translational modifications. Cellular Signalling, 19(6), 1101–1112. https://doi.org/10.1016/j.cellsig.2007.02.002

    Article  CAS  PubMed  Google Scholar 

  172. Duxbury, M. S., Ito, H., Zinner, M. J., Ashley, S. W., & Whang, E. E. (2004). Inhibition of SRC tyrosine kinase impairs inherent and acquired gemcitabine resistance in human pancreatic adenocarcinoma cells. Clin Canc Res, 10(7), 2307–2318. https://doi.org/10.1158/1078-0432.ccr-1183-3

    Article  CAS  Google Scholar 

  173. Yezhelyev, M. V., Koehl, G., Guba, M., Brabletz, T., Jauch, K. W., Ryan, A., et al. (2004). Inhibition of SRC tyrosine kinase as treatment for human pancreatic cancer growing orthotopically in nude mice. Clin Canc Res, 10(23), 8028–8036. https://doi.org/10.1158/1078-0432.CCR-04-0621

    Article  CAS  Google Scholar 

  174. Ischenko, I., Guba, M., Yezhelyev, M., Papyan, A., Schmid, G., Green, T., et al. (2007). Effect of Src kinase inhibition on metastasis and tumor angiogenesis in human pancreatic cancer. Angiogen, 10(3), 167–182. https://doi.org/10.1007/s10456-007-9071-3

    Article  CAS  Google Scholar 

  175. Falcon, B. L., Chintharlapalli, S., Uhlik, M. T., & Pytowski, B. (2016). Antagonist antibodies to vascular endothelial growth factor receptor 2 (VEGFR-2) as anti-angiogenic agents. Pharmacology & Therapeutics, 164, 204–225. https://doi.org/10.1016/j.pharmthera.2016.06.001

    Article  CAS  Google Scholar 

  176. Shen, J., Vil, M. D., Prewett, M., Damoci, C., Zhang, H., Li, H., et al. (2009). Development of a fully human anti-PDGFRbeta antibody that suppresses growth of human tumor xenografts and enhances antitumor activity of an anti-VEGFR2 antibody. Neoplasia, 11(6), 594–604. https://doi.org/10.1593/neo.09278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Bruns, C. J., Shrader, M., Harbison, M. T., Portera, C., Solorzano, C. C., Jauch, K. W., et al. (2002). Effect of the vascular endothelial growth factor receptor-2 antibody DC101 plus gemcitabine on growth, metastasis and angiogenesis of human pancreatic cancer growing orthotopically in nude mice. Int J Canc, 102(2), 101–108. https://doi.org/10.1002/ijc.10681

    Article  CAS  Google Scholar 

  178. Ali, Y., Lin, Y., Gharibo, M. M., Gounder, M. K., Stein, M. N., Lagattuta, T. F., et al. (2007). Phase I and pharmacokinetic study of imatinib mesylate (Gleevec) and gemcitabine in patients with refractory solid tumors. Clin Canc Res, 13(19), 5876–5882. https://doi.org/10.1158/1078-0432.CCR-07-0883

    Article  CAS  Google Scholar 

  179. Xie, L., Kassner, M., Munoz, R. M., Que, Q. Q., Kiefer, J., Zhao, Y., et al. (2012). Kinome-wide siRNA screening identifies molecular targets mediating the sensitivity of pancreatic cancer cells to Aurora kinase inhibitors. Biochemical Pharmacology, 83(4), 452–461. https://doi.org/10.1016/j.bcp.2011.11.005

    Article  CAS  PubMed  Google Scholar 

  180. Takayama, Y., Kokuryo, T., Yokoyama, Y., Nagino, M., Nimura, Y., Senga, T., et al. (2008). MEK inhibitor enhances the inhibitory effect of imatinib on pancreatic cancer cell growth. Canc Lett, 264(2), 241–249. https://doi.org/10.1016/j.canlet.2008.01.035

    Article  CAS  Google Scholar 

  181. Salem, M. S. H., Abdel Aziz, Y. M., Elgawish, M. S., Said, M. M., & Abouzid, K. A. M. (2020). Design, synthesis, biological evaluation and molecular modeling study of new thieno[2,3-d]pyrimidines with anti-proliferative activity on pancreatic cancer cell lines. Bioorganic Chemistry, 94, 103472. https://doi.org/10.1016/j.bioorg.2019.103472

    Article  CAS  PubMed  Google Scholar 

  182. Mann, K. M., Ying, H., Juan, J., Jenkins, N. A., & Copeland, N. G. (2016). KRAS-related proteins in pancreatic cancer. Pharmacology & Therapeutics, 168, 29–42. https://doi.org/10.1016/j.pharmthera.2016.09.003

    Article  CAS  Google Scholar 

  183. Roberts, P. J., & Der, C. J. (2007). Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncog, 26(22), 3291–3310. https://doi.org/10.1038/sj.onc.1210422

    Article  CAS  Google Scholar 

  184. Nguyen, L. K., Kolch, W., & Kholodenko, B. N. (2013). When ubiquitination meets phosphorylation: A systems biology perspective of EGFR/MAPK signalling. Cell Communication and Signaling: CCS, 11(1), 52. https://doi.org/10.1186/1478-811X-11-52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Ding, X. Z., Tong, W. G., & Adrian, T. E. (2001). 12-lipoxygenase metabolite 12(S)-HETE stimulates human pancreatic cancer cell proliferation via protein tyrosine phosphorylation and ERK activation. Int J Canc, 94(5), 630–636. https://doi.org/10.1002/ijc.1527

    Article  CAS  Google Scholar 

  186. Lorusso, P. M., Adjei, A. A., Varterasian, M., Gadgeel, S., Reid, J., Mitchell, D. Y., et al. (2005). Phase I and pharmacodynamic study of the oral MEK inhibitor CI-1040 in patients with advanced malignancies. Journal of Clinical Oncology, 23(23), 5281–5293. https://doi.org/10.1200/JCO.2005.14.415

    Article  CAS  PubMed  Google Scholar 

  187. Cicenas, J. (2008). The potential role of Akt phosphorylation in human cancers. International Journal of Biological Markers, 23(1), 1–9. https://doi.org/10.1177/172460080802300101

    Article  CAS  Google Scholar 

  188. Li, W., Jiang, Z., Xiao, X., Wang, Z., Wu, Z., Ma, Q., et al. (2018). Curcumin inhibits superoxide dismutase-induced epithelial-to-mesenchymal transition via the PI3K/Akt/NF-kappaB pathway in pancreatic cancer cells. International Journal of Oncology. https://doi.org/10.3892/ijo.2018.4295

    Article  PubMed  PubMed Central  Google Scholar 

  189. Zhong, Z., Sepramaniam, S., Chew, X. H., Wood, K., Lee, M. A., Madan, B., et al. (2019). PORCN inhibition synergizes with PI3K/mTOR inhibition in Wnt-addicted cancers. Oncogene, 38(40), 6662–6677. https://doi.org/10.1038/s41388-019-0908-1

    Article  CAS  PubMed  Google Scholar 

  190. Mao, Y., Xi, L., Li, Q., Wang, S., Cai, Z., Zhang, X., et al. (2018). Combination of PI3K/Akt pathway inhibition and Plk1 depletion can enhance chemosensitivity to gemcitabine in pancreatic carcinoma. Transl Oncol, 11(4), 852–863. https://doi.org/10.1016/j.tranon.2018.04.011

    Article  PubMed  PubMed Central  Google Scholar 

  191. Banno, E., Togashi, Y., de Velasco, M. A., Mizukami, T., Nakamura, Y., Terashima, M., et al. (2017). Clinical significance of Akt2 in advanced pancreatic cancer treated with erlotinib. International Journal of Oncology, 50(6), 2049–2058. https://doi.org/10.3892/ijo.2017.3961

    Article  CAS  PubMed  Google Scholar 

  192. Van Dort, M. E., Galban, S., Wang, H., Sebolt-Leopold, J., Whitehead, C., Hong, H., et al. (2015). Dual inhibition of allosteric mitogen-activated protein kinase (MEK) and phosphatidylinositol 3-kinase (PI3K) oncogenic targets with a bifunctional inhibitor. Bioorganic & Medicinal Chemistry, 23(7), 1386–1394. https://doi.org/10.1016/j.bmc.2015.02.053

  193. Cao, P., Maira, S. M., Garcia-Echeverria, C., & Hedley, D. W. (2009). Activity of a novel, dual PI3-kinase/mTor inhibitor NVP-BEZ235 against primary human pancreatic cancers grown as orthotopic xenografts. Br J Canc, 100(8), 1267–1276. https://doi.org/10.1038/sj.bjc.6604995

    Article  CAS  Google Scholar 

  194. Ponz-Sarvise, M., Corbo, V., Tiriac, H., Engle, D. D., Frese, K. K., Oni, T. E., et al. (2019). Identification of resistance pathways specific to malignancy using organoid models of pancreatic cancer. Clin Canc Res, 25(22), 6742–6755. https://doi.org/10.1158/1078-0432.CCR-19-1398

    Article  CAS  Google Scholar 

  195. Giroux, V., Dagorn, J. C., & Iovanna, J. L. (2009). A review of kinases implicated in pancreatic cancer. Pancreatol, 9(6), 738–754. https://doi.org/10.1159/000199435

Download references

Acknowledgements

This work was supported by grants from the Shanghai Municipal Education Commission-Young Teacher Training Projection Program (ZZJKYX18004). Dr. Chen thanks Ms. Yanting Song for her support during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Nianhong Chen conceived the study, performed the literature search and data analysis, and drafted the article. Qiaoqiao Zheng, Guoqing Wan, Xiaobin Zeng, and Feng Guo revised the final paper. Nianhong Chen and Ping Shi contributed to the interpretation of the results and made critical revisions. All authors have reviewed the final version of the manuscript and approved it for publication.

Corresponding authors

Correspondence to Nianhong Chen, Xiaobin Zeng or Ping Shi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, N., Zheng, Q., Wan, G. et al. Impact of posttranslational modifications in pancreatic carcinogenesis and treatments. Cancer Metastasis Rev 40, 739–759 (2021). https://doi.org/10.1007/s10555-021-09980-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-021-09980-4

Keywords

Navigation