Skip to main content

Advertisement

Log in

An overview of genetic mutations and epigenetic signatures in the course of pancreatic cancer progression

  • Non-Thematic Review
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Pancreatic cancer (PC) is assumed to be an intimidating and deadly malignancy due to being the leading cause of cancer-led mortality, predominantly affecting males of older age. The overall (5 years) survival rate of PC is less than 9% and is anticipated to be aggravated in the future due to the lack of molecular acquaintance and diagnostic tools for its early detection. Multiple factors are involved in the course of PC development, including genetics, cigarette smoking, alcohol, family history, and aberrant epigenetic signatures of the epigenome. In this review, we will mainly focus on the genetic mutations and epigenetic signature of PC. Multiple tumor suppressor and oncogene mutations are involved in PC initiation, including K-RAS, p53, CDKN2A, and SMAD4. The mutational frequency of these genes ranges from 50 to 98% in PC. The nature of mutation diagnosis is mostly homozygous deletion, point mutation, and aberrant methylation. In addition to genetic modification, epigenetic alterations particularly aberrant hypermethylation and hypomethylation also predispose patients to PC. Hypermethylation is mostly involved in the downregulation of tumor suppressor genes and leads to PC, while multiple genes also represent a hypomethylation status in PC. Several renewable drugs and detection tools have been developed to cope with this aggressive malady, but all are futile, and surgical resection remains the only choice for prolonged survival if diagnosed before metastasis. However, the available therapeutic development is insufficient to cure PC. Therefore, novel approaches are a prerequisite to elucidating the genetic and epigenetic mechanisms underlying PC progression for healthier lifelong survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

PC:

Pancreatic cancer

PADC:

Pancreatic ductal adenocarcinoma

PanNET:

Pancreatic neuroendocrine tumor

IPMN:

Intraductal papillary mucinous neoplasms or tumors

K-RAS:

Kirsten rat sarcoma

TP53/ p53:

Tumor protein 53

CDKN2A:

Cyclin-dependent kinase inhibitor 2 A

DPC4/ SMAD4:

Deleted in pancreatic carcinoma 4/ Mother against decapentaplegic, homologs 4

BRCA1:

Breast cancer 2, early onset

BRCA2:

Breast cancer 2, early onset

PALB2:

Partner and localizer of BRCA2

SBE:

SMAD4 binding protein

DNMTs:

DNA methyltransferases

ATM:

Ataxia telangiectasia mutated

APC:

Adenomatous polyposis coli

STK11:

Serine/threonine kinase 11

MLH1:

MutL homolog

PRSS1:

Serine Protease 1

PMS2:

Postmeiotic Segregation Increased, S. Cerevisiae, 2

MSH2:

MutS protein homolog 2

MSH6:

MutS homolog 6

GTP:

Guanosine triphosphate

GDP:

Guanosine diphosphate

RTK:

Receptor tyrosine kinases

ERK:

Extracellular signal–regulated kinases

PI3K:

Phosphoinositide 3-kinase

PTEN:

Phosphatase and tensin homolog

AKT/ PKB:

Protein kinase B

NF-κB:

Nuclear factor kappa-light-chain-enhancer of activated B cell

MAPK:

Mitogen-activated Protein Kinase

IL-1 α:

Interleukin 1 Alpha

PRIMA-1:

Proline-rich membrane anchor 1

MDM2:

Mouse double minute 2 homolog

Yap:

Yes-associated protein

BCL2:

B-cell lymphoma 2

Rb:

Retinoblastoma

SNPs:

Single nucleotide polymorphism

qPCR:

Quantitative polymerase chain reaction

IGF1R/IR:

Insulin-like growth factor 1 receptor

TGFβ:

Transforming growth factor-β

TET:

Ten-eleven translocase

MBD4:

Methyl-CpG-binding domain protein 4

CCND2:

Cyclin D2

PENK:

Preproenkephalin

JAK-STAT:

Janus kinase signal transducers and activators of transcription

PCDH10:

Protocadherin 10

SOCS-1:

Suppressor of cytokine signaling – 1

MAD:

Mitosis Arrest DeFicient

MAP4K4:

Mitogen-activated protein 4 kinase 4

SERPINB5:

Serpin Family B Member 5

SULT1E1:

Sulfotransferase Family 1E Member 1

MUC4:

Mucin-4

5-mC:

5- methylcytosine

5-hmC:

5- hydroxy methylcytosine

References

  1. Siegel, R. L., Miller, K. D., & Jemal, A. (2019). Cancer statistics, 2019. CA: a Cancer Journal for Clinicians, 69, 7–34.2.

    Google Scholar 

  2. Street W. Cancer Facts & Figures 2019. American Cancer Society: Atlanta, GA, USA. 2019. (Accessed on 19-11-2019).

  3. Rahib, L., Smith, B. D., Aizenberg, R., Rosenzweig, A. B., Fleshman, J. M., & Matrisian, L. M. (2014). Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Research, 74(11), 2913–2921.

    Article  CAS  PubMed  Google Scholar 

  4. Parkin, D. M., Bray, F., Ferlay, J., & Pisani, P. (2005). Global cancer statistics, 2002. CA: a Cancer Journal for Clinicians, 55(2), 74–108.

    Google Scholar 

  5. Teague, A., Lim, K. H., & Wang-Gillam, A. (2015). Advanced pancreatic adenocarcinoma: a review of current treatment strategies and developing therapies. Therapeutic Advances in Medical Oncology., 7(2), 68–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Niess, H., Kleespies, A., Andrassy, J., Pratschke, S., Angele, M. K., Guba, M., Jauch, K. W., & Bruns, C. J. (2013). Pancreatic cancer in the elderly: guidelines and individualized therapy. Der Chirurg; Zeitschrift fur alle Gebiete der operativen Medizen., 84(4), 291–295.

    CAS  PubMed  Google Scholar 

  7. Oberstein, P. E., & Olive, K. P. (2013). Pancreatic cancer: why is it so hard to treat? Therapeutic Advances in Gastroenterology, 6(4), 321–337.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Neoptolemos, J. P., Stocken, D. D., Friess, H., Bassi, C., Dunn, J. A., Hickey, H., Beger, H., Fernandez-Cruz, L., Dervenis, C., Lacaine, F., & Falconi, M. (2004). A randomized trial of chemoradiotherapy and chemotherapy after resection of pancreatic cancer. The New England Journal of Medicine, 350(12), 1200–1210.

    Article  CAS  PubMed  Google Scholar 

  9. Bosetti, C., Lucenteforte, E., Silverman, D. T., Petersen, G., Bracci, P. M., Ji, B. T., Negri, E., Li, D., Risch, H. A., Olson, S. H., & Gallinger, S. (2011). Cigarette smoking and pancreatic cancer: an analysis from the International Pancreatic Cancer Case-Control Consortium (Panc4). Annals of Oncology, 23(7), 1880–1888.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Klein, A. P., Brune, K. A., Petersen, G. M., Goggins, M., Tersmette, A. C., Offerhaus, G. J., Griffin, C., Cameron, J. L., Yeo, C. J., Kern, S., & Hruban, R. H. (2004). Prospective risk of pancreatic cancer in familial pancreatic cancer kindreds. Cancer Research, 64(7), 2634–2638.

    Article  CAS  PubMed  Google Scholar 

  11. Hidalgo, M., Cascinu, S., Kleeff, J., Labianca, R., Löhr, J. M., Neoptolemos, J., Real, F. X., Van Laethem, J. L., & Heinemann, V. (2015). Addressing the challenges of pancreatic cancer: future directions for improving outcomes. Pancreatology., 15(1), 8–18.

    Article  PubMed  Google Scholar 

  12. Stewart BW, Wild CP (2019). World cancer report, 2014. Public Health.

  13. De La Cruz, M. S., Young, A. P., & Ruffin, M. T. (2014). Diagnosis and management of pancreatic cancer. American Family Physician, 89(8), 626–632.

    Google Scholar 

  14. Street W. Cancer Facts & Figures 2019. American Cancer Society: Atlanta, GA, USA. 2019. https://www.cancer.org/cancer/pancreatic-cancer/detection-diagnosis-staging/survival-rates.html. (Accessed on Nov 22, 2019).

  15. Rawla, P., Sunkara, T., & Gaduputi, V. (2019). Epidemiology of pancreatic cancer: global trends, etiology and risk factors. World Journal of Oncology., 10(1), 10.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Siegel, R. L., Miller, K. D., & Jemal, A. (2016). Cancer statistics, 2016. CA: a Cancer Journal for Clinicians, 66(1), 7–30.

    Google Scholar 

  17. Mohammed, S., George Van Buren, I. I., & Fisher, W. E. (2014). Pancreatic cancer: advances in treatment. World journal of gastroenterology: WJG, 20(28), 9354.

    PubMed  PubMed Central  Google Scholar 

  18. Haqq, J., Howells, L. M., Garcea, G., Metcalfe, M. S., Steward, W. P., & Dennison, A. R. (2014). Pancreatic stellate cells and pancreas cancer: current perspectives and future strategies. European Journal of Cancer, 50, 2570–2582.

    Article  PubMed  Google Scholar 

  19. Ikenaga, N., Ohuchida, K., Mizumoto, K., Cui, L., Kayashima, T., Morimatsu, K., et al. (2010). CD10+ pancreatic stellate cells enhance the progression of pancreatic cancer. Gastroenterology, 139, 1041–1051.

    Article  CAS  PubMed  Google Scholar 

  20. Lonardo, E., Frias-Aldeguer, J., Hermann, P. C., & Heeschen, C. (2012). Pancreatic stellate cells form a niche for cancer stem cells and promote their self-renewal and invasiveness. Cell Cycle, 11, 1282–1290.

    Article  CAS  PubMed  Google Scholar 

  21. Jacobetz, M. A., Chan, D. S., Neesse, A., Bapiro, T. E., Cook, N., Frese, K. K., et al. (2013). Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer. Gut, 62, 112–120.

    Article  CAS  PubMed  Google Scholar 

  22. Özdemir, B. C., Pentcheva-Hoang, T., Carstens, J. L., Zheng, X., Wu, C. C., Simson, T., et al. (2014). Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with diminished survival. Cancer Cell, 25, 719–734.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Rhim, A. D., Oberstein, P. E., Thomas, D. H., Mirek, E. T., Palermo, C. F., Sastra, S. A., et al. (2014). Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell, 25, 735–747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Puleo, F., Nicolle, R., Blum, Y., Cros, J., Marisa, L., Demetter, P., et al. (2018). Stratification of pancreatic ductal adenocarcinomas based on tumor and microenvironment features. Gastroenterology, 155, 1999–2013.

    Article  PubMed  Google Scholar 

  25. Moffitt, R. A., Marayati, R., Flate, E. L., Volmar, K. E., Loeza, S. G., Hoadley, K. A., et al. (2015). Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma. Nature Genetics, 47, 1168–1178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ye, C., Zheng, L., & Yuan, C. H. (2019). Pancreatic ductal adenocarcinoma immune microenvironment and immunotherapy prospects. Zhonghua wai ke za zhi [Chinese Journal of Surgery]., 57(1), 10–15.

    CAS  PubMed  Google Scholar 

  27. Banerjee, K., Kumar, S., Ross, K. A., et al. (2018). Emerging trends in the immunotherapy of pancreatic cancer. Cancer Letters, 417, 35–46.

    Article  CAS  PubMed  Google Scholar 

  28. Yarchoan, M., Hopkins, A., & Jaffee, E. M. (2017). Tumor mutational burden and response rate to PD-1 inhibition. The New England Journal of Medicine, 377, 2500–2501.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Laklai, H., Miroshnikova, Y. A., Pickup, M. W., et al. (2016). Genotype tunes pancreatic ductal adenocarcinoma tissue tension to induce matricellular fibrosis and tumor progression. Nature Medicine, 22, 497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Feig, C., Gopinathan, A., Neesse, A., Chan, D. S., Cook, N., & Tuveson, D. A. (2012). The pancreas cancer microenvironment. AACR: In.

    Book  Google Scholar 

  31. Ferdek, P. E., & Jakubowska, M. A. (2017). Biology of pancreatic stellate cellsdmore than just pancreatic cancer. Pflügers Archiv - European Journal of Physiology, 469, 1039–1050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Apte, M., Pirola, R., & Wilson, J. (2012). Pancreatic stellate cells: a starring role in normal and diseased pancreas. Frontiers in Physiology, 3, 344.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Jiang, H., Hegde, S., & DeNardo, D. G. (2017). Tumor-associated fibrosis as a regulator of tumor immunity and response to immunotherapy. Cancer Immunology, Immunotherapy, 66, 1037–1048.

    Article  CAS  PubMed  Google Scholar 

  34. Pothula, S. P., Xu, Z., Goldstein, D., Pirola, R. C., Wilson, J. S., & Apte, M. V. (2016). Key role of pancreatic stellate cells in pancreatic cancer. Cancer Letters, 381, 194–200.

    Article  CAS  PubMed  Google Scholar 

  35. Von Ahrens, D., Bhagat, T. D., Nagrath, D., Maitra, A., & Verma, A. (2017). The role of stromal cancer-associated fibroblasts in pancreatic cancer. Journal of Hematology & Oncology, 10, 76.

    Article  Google Scholar 

  36. Ohlund, D., Handly-Santana, A., Biffi, G., et al. (2017). Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. The Journal of Experimental Medicine, 214, 579–596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ozdemir, B. C., Pentcheva-Hoang, T., Carstens, J. L., et al. (2014). Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell, 25, 719–734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ugel, S., De Sanctis, F., Mandruzzato, S., & Bronte, V. (2015). Tumor-induced myeloid deviation: when myeloid-derived suppressor cells meet tumor-associated macrophages. Journal of Clinical Investigation, 125, 3365–3376.

    Article  Google Scholar 

  39. Porembka, M. R., Mitchem, J. B., Belt, B. A., et al. (2012). Pancreatic adenocarcinoma induces bone marrow mobilization of myeloidderived suppressor cells which promote primary tumor growth. Cancer Immunology, Immunotherapy, 61, 1373–1385.

    Article  CAS  PubMed  Google Scholar 

  40. Stromnes, I. M., Brockenbrough, J. S., Izeradjene, K., et al. (2014). Targeted depletion of an MDSC subset unmasks pancreatic ductal adenocarcinoma to adaptive immunity. Gut., 63, 1769–1781.

    Article  CAS  PubMed  Google Scholar 

  41. Liu, G., Bi, Y., Shen, B., et al. (2014). SIRT1 limits the function and fate of myeloid-derived suppressor cells in tumors by orchestrating HIF-1aedependent glycolysis. Cancer Research, 74, 727–737.

    Article  CAS  PubMed  Google Scholar 

  42. Stromnes, I. M., Hulbert, A., Pierce, R. H., Greenberg, P. D., & Hingorani, S. R. (2017). T-cell localization, activation, and clonal expansion in human pancreatic ductal adenocarcinoma. Cancer Immunology Research, 5, 978–991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ghiorzo, P. (2014). Genetic predisposition to pancreatic cancer. World Journal of Gastroenterology, 20(31), 10778–10789.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Shi, C., Daniels, J. A., & Hruban, R. H. (2008). Molecular characterization of pancreatic neoplasms. Advances in Anatomic Pathology, 15(4), 185–195.

    Article  CAS  PubMed  Google Scholar 

  45. Vincent, A., Herman, J., Schulick, R., Hruban, R. H., & Goggins, M. (2011). Pancreatic cancer. Lancet., 378(9791), 607–620.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Solomon, S., Das, S., Brand, R., & Whitcomb, D. C. (2012). Inherited pancreatic cancer syndromes. Cancer Journal, 18(6), 485491.

    Article  Google Scholar 

  47. Hahn, S. A., Greenhalf, B., Ellis, I., Sina-Frey, M., Rieder, H., Korte, B., Gerdes, B., Kress, R., Ziegler, A., Raeburn, J. A., & Campra, D. (2003). BRCA2 germline mutations in familial pancreatic carcinoma. Journal of the National Cancer Institute, 95(3), 214–221.

    Article  CAS  PubMed  Google Scholar 

  48. Couch, F. J., Johnson, M. R., Rabe, K. G., Brune, K., De Andrade, M., Goggins, M., Rothenmund, H., Gallinger, S., Klein, A., Petersen, G. M., & Hruban, R. H. (2007). The prevalence of BRCA2 mutations in familial pancreatic cancer. Cancer Epidemiology and Prevention Biomarkers., 16(2), 342–346.

    Article  CAS  Google Scholar 

  49. Murphy, K. M., Brune, K. A., Griffin, C., Sollenberger, J. E., Petersen, G. M., Bansal, R., Hruban, R. H., & Kern, S. E. (2002). Evaluation of candidate genes MAP2K4, MADH4, ACVR1B, and BRCA2 in familial pancreatic cancer: deleterious BRCA2 mutations in 17%. Cancer Research, 62(13), 3789–3793.

    CAS  PubMed  Google Scholar 

  50. Jones, S., Hruban, R. H., Kamiyama, M., Borges, M., Zhang, X., Parsons, D. W., Lin, J. C., Palmisano, E., Brune, K., Jaffee, E. M., & Iacobuzio-Donahue, C. A. (2009). Exomic sequencing identifies PALB2 as a pancreatic cancer susceptibility gene. Science., 324(5924), 217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tischkowitz, M. D., Sabbaghian, N., Hamel, N., Borgida, A., Rosner, C., Taherian, N., Srivastava, A., Holter, S., Rothenmund, H., Ghadirian, P., & Foulkes, W. D. (2009). Analysis of the gene coding for the BRCA2-interacting protein PALB2 in familial and sporadic pancreatic cancer. Gastroenterology., 137(3), 1183–1186.

    Article  PubMed  Google Scholar 

  52. Slater, E. P., Langer, P., Niemczyk, E., Strauch, K., Butler, J., Habbe, N., Neoptolemos, J. P., Greenhalf, W., & Bartsch, D. K. (2010). PALB2 mutations in European familial pancreatic cancer families. Clinical Genetics, 78(5), 490–494.

    Article  CAS  PubMed  Google Scholar 

  53. Hwang, R. F., Gordon, E. M., Anderson, W. F., & Parekh, D. (1998). Gene therapy for primary and metastatic pancreatic cancer with intraperitoneal retroviral vector bearing the wild-type p53 gene. Surgery, 124, 143–150.

    Article  CAS  PubMed  Google Scholar 

  54. Schutte, M., Hruban, R. H., Geradts, J., Maynard, R., Hilgers, W., Rabindran, S. K., Moskaluk, C. A., Hahn, S. A., Schwarte-Waldhoff, I., Schmiegel, W., et al. (1997). Abrogation of the RB/p16 tumor-suppressive pathway in virtually all pancreatic carcinomas. Cancer Research, 57, 3126–3130.

    CAS  PubMed  Google Scholar 

  55. Blackford, A., Serrano, O. K., Wolfgang, C. L., Parmigiani, G., Jones, S., Zhang, X., Parsons, D. W., Lin, J. C., Leary, R. J., Eshleman, J. R., & Goggins, M. (2009). SMAD4 gene mutations are associated with poor prognosis in pancreatic cancer. Clinical Cancer Research, 15(14), 4674–4679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kim, S. T., Lim, D. H., Jang, K. T., Lim, T., Lee, J., Choi, Y. L., Jang, H. L., Yi, J. H., Baek, K. K., Park, S. H., & Park, Y. S. (2011). Impact of KRAS mutations on clinical outcomes in pancreatic cancer patients treated with first-line gemcitabine-based chemotherapy. Molecular Cancer Therapeutics, 10(10), 1993–1999.

    Article  CAS  PubMed  Google Scholar 

  57. De Bosscher, K., Hill, C. S., & Nicolas, F. J. (2004). Molecular and functional consequences of SMAD4 c-terminal missense mutations in colorectal tumour cells. The Biochemical Journal, 379, 209–216.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Blackford, A., Serrano, O. K., Wolfgang, C. L., Parmigiani, G., Jones, S., Zhang, X., Parsons, D. W., Lin, J. C., Leary, R. J., Eshleman, J. R., et al. (2009). SMAD4 gene mutations are associated with poor prognosis in pancreatic cancer. Clinical Cancer Research, 15, 4674–4679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Schutte, M., Hruban, R. H., Geradts, J., Maynard, R., Hilgers, W., Rabindran, S. K., Moskaluk, C. A., Hahn, S. A., Schwarte-Waldhoff, I., Schmiegel, W., et al. (1997). Abrogation of the RB/p16 tumor-suppressive pathway in virtually all pancreatic carcinomas. Cancer Research, 57, 3126–3130.

    CAS  PubMed  Google Scholar 

  60. Chen, J., Li, D., Killary, A. M., Sen, S., Amos, C. I., Evans, D. B., Abbruzzese, J. L., & Frazier, M. L. (2009). Polymorphisms of p16, p27, p73, and MDM2 modulate response and survival of pancreatic cancer patients treated with preoperative chemoradiation. Annals of Surgical Oncology, 16, 431–439.

    Article  PubMed  Google Scholar 

  61. Hwang, R. F., Gordon, E. M., Anderson, W. F., & Parekh, D. (1998). Gene therapy for primary and metastatic pancreatic cancer with intraperitoneal retroviral vector bearing the wild-type p53 gene. Surgery, 124, 143–150.

    Article  CAS  PubMed  Google Scholar 

  62. Kern, S. E., Pietenpol, J. A., Thiagalingam, S., Seymour, A., Kinzler, K. W., & Vogelstein, B. (1992). Oncogenic forms of p53 inhibit p53-regulated gene expression. Science, 256, 827–830.

    Article  CAS  PubMed  Google Scholar 

  63. Bamford, S., Dawson, E., Forbes, S., Clements, J., Pettett, R., Dogan, A., Flanagan, A., Teague, J., Futreal, P. A., Stratton, M. R., et al. (2004). Thecosmic (catalogue of somatic mutations in cancer) database and website. British Journal of Cancer, 91, 355–358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kim, S. T., Lim, D. H., Jang, K. T., Lim, T., Lee, J., Choi, Y. L., Jang, H. L., Yi, J. H., Baek, K. K., Park, S. H., et al. (2011). Impact of KRAS mutations on clinical outcomes in pancreatic cancer patients treated with first-line gemcitabine-based chemotherapy. Molecular Cancer Therapeutics, 10, 1993–1999.

    Article  CAS  PubMed  Google Scholar 

  65. Fernandez-Medarde, E., & Santos. (2011). Ras in cancer and developmental diseases. Genes & Cancer, 2, 344–358.

    Article  CAS  Google Scholar 

  66. Pylayeva-Gupta, Y., Grabocka, E., & Bar-Sagi, D. (2011). RAS oncogenes: weaving a tumorigenic web. Nature Reviews. Cancer, 11, 761–774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tites, E. C. S., & Chandran, K. S. R. (2009). A systems perspective of ras signaling in cancer. Clinical Cancer Research, 15, 1510–1513.

    Article  Google Scholar 

  68. Forbes, S. A., Bindal, N., Bamford, S., Cole, C., Kok, C. Y., Beare, D., Jia, M., Shepherd, R., Leung, K., Menzies, A., Teague, J. W., Campbell, P. J., Stratton, M. R., & Futreal, P. A. (2011). COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Research, 39, D945–D950.

    Article  CAS  PubMed  Google Scholar 

  69. Jones, S., Zhang, X., Parsons, D. W., et al. (2008). Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science., 321(5897), 1801–1806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hruban, R. H., van Mansfeld, A. D., Offerhaus, G. J., et al. (1993). K-ras oncogene activation in adenocarcinoma of the human pancreas: a study of 82 carcinomas using a combination of mutant-enriched polymerase chain reaction analysis and allele-specific oligonucleotide hybridization. The American Journal of Pathology, 143(2), 545–554.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Caldas, S. A., Hahn, R. H., Hruban, M. S., & Redston, C. J. (1994). Detection of K-ras mutations in the stool of patients with pancreatic adenocarcinoma and pancreatic ductal hyperplasia. Cancer Research, 54, 3568–3573.

    CAS  PubMed  Google Scholar 

  72. Kim, J., Reber, H. A., Dry, S. M., Elashoff, D., Chen, S. L., Umetani, N., Kitago, M., Hines, O. J., Kazanjian, K. K., Hiramatsu, S., Bilchik, A. J., Yong, S., Shoup, M., & Hoon, D. S. (2006). Unfavourable prognosis associated with K-ras gene mutation in pancreatic cancer surgical margins. Gut, 55, 1598–1605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kawesha, A., Ghaneh, P., Andren-Sandberg, A., Ograed, D., Skar, R., Dawiskiba, S., Evans, J. D., Campbell, F., Lemoine, N., & Neoptolemos, J. P. (2000). K-ras oncogene subtype mutations are associated with survival but not expression of p53 p16(INK4A), p21(WAF-1), cyclin D1, erbB-2 and erbB-3 in resected pancreatic ductal adenocarcinoma. International Journal of Cancer, 89, 469–474.

    Article  CAS  PubMed  Google Scholar 

  74. RM, Ferrone, C. R., Mullarky, E., Shyh-Chang, N., Kang, Y., Fleming, J. B., Bardeesy, N., Asara, J. M., Haigis, M. C., De Pinho, R. A., Cantley, L. C., & Kimmelman, A. C. (2013). Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature, 496, 101–105.

    Article  Google Scholar 

  75. Kawesha, A., Ghaneh, P., Andren-Sandberg, A., Ograed, D., Skar, R., Dawiskiba, S., Evans, J. D., Campbell, F., Lemoine, N., & Neoptolemos, J. P. (2000). K-ras oncogene subtype mutations are associated with survival but not expression of p53 p16(INK4A), p21(WAF-1), cyclin D1, erbB-2 and erbB-3 in resected pancreatic ductal adenocarcinoma. International Journal of Cancer, 89, 469–474.

    Article  CAS  PubMed  Google Scholar 

  76. Immervoll, H., Hoem, D., Kugarajh, K., Steine, S. J., & Molven, A. (2006). Molecular analysis of the EGFR-RAS-RAF pathway in pancreatic ductal adenocarcinomas: lack of mutations in the BRAF and EGFR genes. Virchows Archiv, 448, 788–796.

    Article  CAS  PubMed  Google Scholar 

  77. Chen, H., Tu, H., Meng, Z. Q., Chen, Z., Wang, P., & Liu, L. M. (2010). K-ras mutational status predicts poor prognosis in unresectable pancreatic cancer. European Journal of Surgical Oncology, 36, 657–662.

    Article  CAS  PubMed  Google Scholar 

  78. Reza, J., Almodovar, A. J., Srivastava, M., Veldhuis, P. P., Patel, S., Fanaian, N. I., Zhu, X., Litherland, S. A., & Arnoletti, J. P. (2019). K-RAS mutant gene found in pancreatic juice activated chromatin from peri-ampullary adenocarcinomas. Epigenetics Insights., 12, 2516865719828348.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Glorieux, C., & Huang, P. (2019). Regulation of CD137 expression through K-Ras signalling in pancreatic cancer cells. Cancer Communications, 39(1), 41.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Nishizawa, N., Kumamoto, Y., Katoh, H., Ushiku, H., Yokoi, K., Tanaka, T., Ishii, S., Igarashi, K., Tajima, H., Kaizu, T., & Yoshida, T. (2019). Dissected peripancreatic tissue margin is a critical prognostic factor and is associated with a K-ras gene mutation in pancreatic ductal adenocarcinoma. Oncology Letters, 17(2), 2141–2150.

    CAS  PubMed  Google Scholar 

  81. Adjei, A. A. (2001). Blocking oncogenic Ras signaling for cancer therapy. Journal of the National Cancer Institute, 93, 1062–1074.

    Article  CAS  PubMed  Google Scholar 

  82. Martin, N. E., Brunner, T. B., Kiel, K. D., DeLaney, T. F., Regine, W. F., Mohiuddin, M., Rosato, E. F., Haller, D. G., Stevenson, J. P., Smith, D., Pramanik, B., Tepper, J., Tanaka, W. K., Morrison, B., Deutsch, P., Gupta, A. K., Muschel, R. J., McKenna, W. G., Bernhard, E. J., & Hahn, S. M. (2004). A phase I trial of the dual farnesyltransferase and geranylgeranyltransferase inhibitor L-778,123 and radiotherapy for locally advanced pancreatic cancer. Clinical Cancer Research, 10, 5447–5454.

    Article  CAS  PubMed  Google Scholar 

  83. Chao, M. W., Chang, L. H., Tu, H. J., Chang, C. D., Lai, M. J., Chen, Y. Y., Liou, J. P., Teng, C. M., & Pan, S. L. (2019). Combination treatment strategy for pancreatic cancer involving the novel HDAC inhibitor MPT0E028 with a MEK inhibitor beyond K-Ras status. Clinical Epigenetics, 11(1), 85.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Dent, P., Booth, L., Roberts, J. L., Liu, J., Poklepovic, A., Lalani, A. S., Tuveson, D., Martinez, J., & Hancock, J. F. (2019). Neratinib inhibits Hippo/YAP signaling, reduces mutant K-RAS expression, and kills pancreatic and blood cancer cells. Oncogene., 38(30), 5890–5904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lane, D. P. (1992). Cancer. p53, guardian of the genome. Nature., 358, 15–16.

    Article  CAS  PubMed  Google Scholar 

  86. Jay, G., Khoury, G., DeLeo, A. B., Dippold, W. G., & Old, L. J. (1981). p53 transformation-related protein: detection of an associated phosphotransferase activity. Proceedings of the National Academy of Sciences, 78(5), 2932–2936.

    Article  CAS  Google Scholar 

  87. Oren, M. (2003). Decision making by p53: life, death and cancer. Cell Death and Differentiation, 10(4), 431.

    Article  CAS  PubMed  Google Scholar 

  88. Vogelstein, B., Lane, D., & Levine, A. J. (2000). Surfing the p53 network. Nature., 408(6810), 307.

    Article  CAS  PubMed  Google Scholar 

  89. El-Deiry, W. S., Kern, S. E., Pietenpol, J. A., Kinzler, K. W., & Vogelstein, B. (1992). Definition of a consensus binding site for p53. Nature Genetics, 1(1), 45.

    Article  CAS  PubMed  Google Scholar 

  90. Li, M., He, Y., Dubois, W., Wu, X., Shi, J., & Huang, J. (2012). Distinct regulatory mechanisms and functions for p53-activated and p53-repressed DNA damage response genes in embryonic stem cells. Molecular Cell, 46(1), 30–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Waldman, T., Kinzler, K. W., & Vogelstein, B. (1995). p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Research, 55(22), 5187–5190.

    CAS  PubMed  Google Scholar 

  92. Polyak, K., Xia, Y., Zweier, J. L., Kinzler, K. W., & Vogelstein, B. (1997). A model for p53-induced apoptosis. Nature., 389(6648), 300.

    Article  CAS  PubMed  Google Scholar 

  93. Donehower, L. A., Harvey, M., Slagle, B. L., McArthur, M. J., Montgomery Jr., C. A., Butel, J. S., & Bradley, A. (1992). Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature., 356(6366), 215.

    Article  CAS  PubMed  Google Scholar 

  94. Ruggeri, B., Zhang, S., Caamano, J., et al. (1992). Human pancreatic carcinomas and cell lines reveal frequent and multiple alterations in the p53 and Rb-1 tumor suppressor genes. Oncogene, 7(8), 1503–1511.

    CAS  PubMed  Google Scholar 

  95. Birch, J. M., Alston, R. D., McNally, R., et al. (2001). Relative frequency and morphology of cancers in carriers of germline TP53 mutations. Oncogene, 20(34), 4621–4628.

    Article  CAS  PubMed  Google Scholar 

  96. Casey, G., Yamanaka, Y., Friess, H., et al. (1993). p53 mutations are common in pancreatic cancer and are absent in chronic pancreatitis. Cancer Letters, 69(3), 151–160.

    Article  CAS  PubMed  Google Scholar 

  97. DiGiuseppe, J. A., Hruban, R. H., Goodman, S. N., Polak, M., Van Den Berg, F. M., Allison, D. C., Cameron, J. L., Johan, A., & Offerhaus, G. (1994). Overexpression of p53 protein in adenocarcinoma of the pancreas. American Journal of Clinical Pathology, 101(6), 684–688.

    Article  CAS  PubMed  Google Scholar 

  98. Redston, M. S., Caldas, C., Seymour, A. B., Hruban, R. H., Da Costa, L., Yeo, C. J., & Kern, S. E. (1994). p53 mutations in pancreatic carcinoma and evidence of common involvement of homocopolymer tracts in DNA microdeletions. Cancer Research, 54(11), 3025–3033.

    CAS  PubMed  Google Scholar 

  99. Casey, G., Yamanaka, Y., Friess, H., Kobrin, M. S., Lopez, M. E., Buchler, M., Beger, H. G., & Korc, M. (1993). p53 mutations are common in pancreatic cancer and are absent in chronic pancreatitis. Cancer Letters, 69(3), 151–160.

    Article  CAS  PubMed  Google Scholar 

  100. Izetti, P., Hautefeuille, A., Abujamra, A. L., et al. (2014). PRIMA-1, a mutant p53 reactivator, induces apoptosis and enhances chemotherapeutic cytotoxicity in pancreatic cancer cell lines. Investigational New Drugs, 32(5), 783–794.

    Article  CAS  PubMed  Google Scholar 

  101. Azmi, A. S., Philip, P. A., Wang, Z., et al. (2010). Reactivation of p53 by novel MDM2 inhibitors: implications for pancreatic cancer therapy. Current Cancer Drug Targets, 10(3), 319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Mello, S. S., Valente, L. J., Raj, N., Seoane, J. A., Flowers, B. M., McClendon, J., Bieging-Rolett, K. T., Lee, J., Ivanochko, D., Kozak, M. M., & Chang, D. T. (2017). A p53 super-tumor suppressor reveals a tumor suppressive p53-Ptpn14-Yap axis in pancreatic cancer. Cancer Cell, 32(4), 460–473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Delma, C. R., Thirugnanasambandan, S., Srinivasan, G. P., Raviprakash, N., Manna, S. K., Natarajan, M., & Aravindan, N. (2019). Fucoidan from marine brown algae attenuates pancreatic cancer progression by regulating p53–NFκB crosstalk. Phytochemistry., 167, 112078.

    Article  CAS  PubMed  Google Scholar 

  104. Cheng, J., Okolotowicz, K. J., Ryan, D., Mose, E., Lowy, A. M., & Cashman, J. R. (2019). Inhibition of invasive pancreatic cancer: restoring cell apoptosis by activating mitochondrial p53. American Journal of Cancer Research, 9(2), 390.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Long, J., Liu, Z., & Hui, L. (2019). Anti-tumor effect and mechanistic study of elemene on pancreatic carcinoma. BMC Complementary and Alternative Medicine, 19(1), 133.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Stott, F. J., Bates, S., James, M. C., et al. (1998). The alternative product from the human CDKN2a locus, p14 (ARF), participates in a regulatory feedback loop with p53 and MDM2. The EMBO Journal, 17, 5001–5014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Serrano, M., Hannon, G. J., & Beach, D. (1993). A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature, 366(6456), 704–707.

    Article  CAS  PubMed  Google Scholar 

  108. Liggett Jr., W. H., & Sidransky, D. (1998). Role of the p16 tumor suppressor gene in cancer. Journal of Clinical Oncology, 16(3), 1197–1206.

    Article  CAS  PubMed  Google Scholar 

  109. Stott, F. J., Bates, S., James, M. C., McConnell, B. B., Starborg, M., Brookes, S., Palmero, I., Ryan, K., Hara, E., Vousden, K. H., & Peters, G. (1998). The alternative product from the human CDKN2A locus, p14ARF, participates in a regulatory feedback loop with p53 and MDM2. The EMBO Journal., 17(17), 5001–5014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Fukushima, N., Sato, N., Ueki, T., Rosty, C., Walter, K. M., Wilentz, R. E., Yeo, C. J., Hruban, R. H., & Goggins, M. (2002). Aberrant methylation of preproenkephalin and p16 genes in pancreatic intraepithelial neoplasia and pancreatic ductal adenocarcinoma. The American Journal of Pathology., 160(5), 1573–1581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Gerdes, B., Ramaswamy, A., Kersting, M., Ernst, M., Lang, S., Schuermann, M., Wild, A., & Bartsch, D. K. (2001). p16INK4a alterations in chronic pancreatitis—indicator for high-risk lesions for pancreatic cancer. Surgery., 129(4), 490–497.

    Article  CAS  PubMed  Google Scholar 

  112. Schutte, M., Hruban, R. H., Geradts, J., Maynard, R., Hilgers, W., Rabindran, S. K., Moskaluk, C. A., Hahn, S. A., Schwarte-Waldhoff, I., Schmiegel, W., & Baylin, S. B. (1997). Abrogation of the Rb/p16 tumor-suppressive pathway in virtually all pancreatic carcinomas. Cancer Research, 57(15), 3126–3130.

    CAS  PubMed  Google Scholar 

  113. Chen, J., Li, D., Killary, A. M., Sen, S., Amos, C. I., Evans, D. B., Abbruzzese, J. L., & Frazier, M. L. (2009). Polymorphisms of p16, p27, p73, and MDM2 modulate response and survival of pancreatic cancer patients treated with preoperative chemoradiation. Annals of Surgical Oncology, 16(2), 431.

    Article  PubMed  Google Scholar 

  114. Attri, J., Srinivasan, R., Majumdar, S., Radotra, B. D., & Wig, J. (2005). Alterations of tumor suppressor gene p16 INK4a in pancreatic ductal carcinoma. BMC Gastroenterology, 5(1), 22.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Loukopoulos, P., Kanetaka, K., Takamura, M., Shibata, T., Sakamoto, M., & Hirohashi, S. (2004). Orthotopic transplantation models of pancreatic adenocarcinoma derived from cell lines and primary tumors and displaying varying metastatic activity. Pancreas., 29(3), 193–203.

    Article  CAS  PubMed  Google Scholar 

  116. Klump, B., Hsieh, C. J., Nehls, O., Dette, S., Holzmann, K., Kiesslich, R., Jung, M., Sinn, U., Ortner, M., Porschen, R., & Gregor, M. (2003). Methylation status of p14ARF and p16INK4a as detected in pancreatic secretions. British Journal of Cancer, 88(2), 217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Heilmann, A. M., Perera, R. M., Ecker, V., Nicolay, B. N., Bardeesy, N., Benes, C. H., & Dyson, N. J. (2014). CDK4/6 and IGF1 receptor inhibitors synergize to suppress the growth of p16INK4A-deficient pancreatic cancers. Cancer Research, 74(14), 3947–3958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Heilmann, A. M., Perera, R. M., Ecker, V., Nicolay, B. N., Bardeesy, N., Benes, C. H., & Dyson, N. J. (2014). CDK4/6 and IGF1 receptor inhibitors synergize to suppress the growth of p16INK4A-deficient pancreatic cancers. Cancer Research, 74(14), 3947–3958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Al Baghdadi, T., Halabi, S., Garrett-Mayer, E., Mangat, P. K., Ahn, E. R., Sahai, V., Alvarez, R. H., Kim, E. S., Yost, K. J., Rygiel, A. L., & Antonelli, K. R. (2019). Palbociclib in patients with pancreatic and biliary cancer with CDKN2A alterations: results from the Targeted Agent and Profiling Utilization Registry Study. JCO Precision Oncology, 14.

  120. Hahn, S. A., Schutte, M., Hoque, A. S., Moskaluk, C. A., Da Costa, L. T., Rozenblum, E., Weinstein, C. L., Fischer, A., Yeo, C. J., Hruban, R. H., & Kern, S. E. (1996). DPC4, a candidate tumor suppressor gene at human chromosome 18q21. 1. Science., 271(5247), 350–353.

    Article  CAS  PubMed  Google Scholar 

  121. Massagué, J. (1996). TGFβ signaling: receptors, transducers, and Mad proteins. Cell., 85(7), 947–950.

    Article  PubMed  Google Scholar 

  122. Saiki, Y., & Horii, A. (2014). Molecular pathology of pancreatic cancer. Pathology International, 64(1), 10–19.

    Article  CAS  PubMed  Google Scholar 

  123. Derynck, R., Akhurst, R. J., & Balmain, A. (2001). TGF-β signaling in tumor suppression and cancer progression. Nature Genetics, 29(2), 117.

    Article  CAS  PubMed  Google Scholar 

  124. Shi, Y., & Massagué, J. (2003). Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell, 113(6), 685–700.

    Article  CAS  PubMed  Google Scholar 

  125. Evan, G. I., & Vousden, K. H. (2001). Proliferation, cell cycle and apoptosis in cancer. Nature, 411(6835), 342.

    Article  CAS  PubMed  Google Scholar 

  126. Lecanda, J., Ganapathy, V., D’Aquino-Ardalan, C., Evans, B., Cadacio, C., Ayala, A., & Gold, L. I. (2009). TGFβ prevents proteasomal degradation of the cyclin-dependent kinase inhibitor p27kip1 for cell cycle arrest. Cell Cycle, 8(5), 742–756.

    Article  CAS  PubMed  Google Scholar 

  127. Massagué, J., Blain, S. W., & Lo, R. S. (2000). TGFβ signaling in growth control, cancer, and heritable disorders. Cell., 103(2), 295–309.

    Article  PubMed  Google Scholar 

  128. De Bosscher, K., Hill, C. S., & Nicolás, F. J. (2004). Molecular and functional consequences of Smad4 C-terminal missense mutations in colorectal tumour cells. The Biochemical Journal, 379(1), 209–216.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Blackford, A., Serrano, O. K., Wolfgang, C. L., Parmigiani, G., Jones, S., Zhang, X., Parsons, D. W., Lin, J. C., Leary, R. J., Eshleman, J. R., & Goggins, M. (2009). SMAD4 gene mutations are associated with poor prognosis in pancreatic cancer. Clinical Cancer Research, 15(14), 4674–4679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Singh, P., Srinivasan, R., & Wig, J. D. (2012). SMAD4 genetic alterations predict a worse prognosis in patients with pancreatic ductal adenocarcinoma. Pancreas., 41(4), 541–546.

    Article  CAS  PubMed  Google Scholar 

  131. Hayashi, H., Kohno, T., Ueno, H., Hiraoka, N., Kondo, S., Saito, M., Shimada, Y., Ichikawa, H., Kato, M., Shibata, T., et al. (2017). Utility of assessing the number of mutated KRAS, CDKN2A, Tp53, and SMAD4 genes using a targeted deep sequencing assay as a prognostic biomarker for pancreatic cancer. Pancreas, 46, 335–340.

    Article  CAS  PubMed  Google Scholar 

  132. Wang, J. D., Jin, K., Chen, X. Y., Lv, J. Q., & Ji, K. W. (2017). Clinicopathological significance of SMAD4 loss in pancreatic ductal adenocarcinomas: a systematic review and meta-analysis. Oncotarget., 8(10), 16704.

    Article  PubMed  Google Scholar 

  133. Hao, J., Zhang, S., Zhou, Y., Liu, C., Hu, X., & Shao, C. (2011). MicroRNA 421 suppresses DPC4/Smad4 in pancreatic cancer. Biochemical and Biophysical Research Communications, 406(4), 552–557.

    Article  CAS  PubMed  Google Scholar 

  134. Wang, F., Xia, X., Yang, C., Shen, J., Mai, J., Kim, H. C., Kirui, D., Kang, Y. A., Fleming, J. B., Koay, E. J., & Mitra, S. (2018). SMAD4 gene mutation renders pancreatic cancer resistance to radiotherapy through promotion of autophagy. Clinical Cancer Research, 24(13), 3176–3185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Yamada, S., Fujii, T., Shimoyama, Y., Kanda, M., Nakayama, G., Sugimoto, H., Koike, M., Nomoto, S., Fujiwara, M., Nakao, A., & Kodera, Y. (2015). SMAD4 expression predicts local spread and treatment failure in resected pancreatic cancer. Pancreas., 44(4), 660–664.

    Article  CAS  PubMed  Google Scholar 

  136. Feig, C., Gopinathan, A., Neesse, A., Chan, D. S., Cook, N., & Tuveson, D. A. (2012). The pancreas cancer microenvironment. Clinical Cancer Research, 18(16), 4266–4276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Bapat, A. A., Hostetter, G., Von Hoff, D. D., & Han, H. (2011). Perineural inva-sion and associated pain in pancreatic cancer. Nature Reviews. Cancer, 11(10), 695–707.

    Article  CAS  PubMed  Google Scholar 

  138. Warburg, O. (1956). Origin of cancer cells. Oncologia, 9(2), 75–83.

    Article  CAS  PubMed  Google Scholar 

  139. Feldmann, G., Beaty, R., Hruban, R. H., & Maitra, A. (2007). Molecular genetics of pancreatic intraepithelial neoplasia. J Hepatobiliary Pan-creat Surg, 14(3), 224–232.

    Article  Google Scholar 

  140. Bryant, K. L., Mancias, J. D., Kimmelman, A. C., & Der, C. J. (2014). KRAS: feed-ing pancreatic cancer proliferation. Trends in Biochemical Sciences, 39(2), 91–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Gaglio, D., Metallo, C. M., Gameiro, P. A., Hiller, K., Danna, L. S., Balestrieri, C., Alberghina, L., Stephanopoulos, G., & Chiaradonna, F. (2011). Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth. Molecular Systems Biology, 7, 523.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Dell’ Antone, P. (2012). Energy metabolism in cancer cells: how to explain the Warburg and Crabtree effects? Medical Hypotheses, 79(3), 388–392.

    Article  PubMed  Google Scholar 

  143. Ying, H., Kimmelman, A. C., Lyssiotis, C. A., Hua, S., Chu, G. C., Fletcher-Sananikone, E., Locasale, J. W., Son, J., Zhang, H., Coloff, J. L., Yan, H., Wang, W., Chen, S., Viale, A., Zheng, H., Paik, J. H., Lim, C., Guimaraes, A. R., Martin, E. S., Chang, J., Hezel, A. F., Perry, S. R., Hu, J., Gan, B., Xiao, Y., Asara, J. M., Weissleder, R., Wang, Y. A., Chin, L., Cantley, L. C., et al. (2012). Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell, 149(3), 656–670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Ma, Z., Vocadlo, D. J., & Vosseller, K. (2013). Hyper-O-GlcNAcylation is anti-apoptotic and maintains constitutive NF-kappaB activity in pan-creatic cancer cells. The Journal of Biological Chemistry, 288(21), 15121–15130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Boros, L. G., Puigjaner, J., Cascante, M., Lee, W. N., Brandes, J. L., Bassilian, S., Yusuf, F. I., Williams, R. D., Muscarella, P., Melvin, W. S., & Schirmer, W. J. (1997). Oxythiamine and dehydroepiandrosterone inhibit the nonoxidative synthesis of ribose and tumor cell proliferation. Cancer Research, 57(19), 4242–4248.

    CAS  PubMed  Google Scholar 

  146. Butera, G., Pacchiana, R., Mullappilly, N., Margiotta, M., Bruno, S., Conti, P., Riganti, C., & Donadelli, M. (2018). Mutant p53 prevents GAPDH nuclear translocation in pancreatic cancer cells favoring glycolysis and 2-deoxyglucose sensitivity. Biochimica et Biophysica Acta, Molecular Cell Research, 1865(12), 1914–1923.

    Article  CAS  PubMed  Google Scholar 

  147. Schofield, H. K., Zeller, J., Espinoza, C., Halbrook, C. J., Del Vecchio, A., Magnuson, B., Fabo, T., Daylan, A. E. C., Kovalenko, I., Lee, H. J., Yan, W., Feng, Y., Karim, S. A., Kremer, D. M., Kumar-Sinha, C., Lyssiotis, C. A., Ljungman, M., Mor-ton, J. P., Galban, S., Fearon, E. R., & Pasca di Magliano, M. (2018). Mutant p53R270H drives altered metabolism and increased invasion in pan-creatic ductal adenocarcinoma. JCI Insight, 3(2), 97422.

    Article  PubMed  Google Scholar 

  148. Guillaumond, F., Leca, J., Olivares, O., Lavaut, M. N., Vidal, N., Berthezene, P., Dusetti, N. J., Loncle, C., Calvo, E., Turrini, O., Iovanna, J. L., Tomasini, R., & Vasseur, S. (2013). Strengthened glycolysis under hypoxia supports tumor symbiosis and hexosamine biosynthesis in pancreatic adeno-carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 110(10), 3919–3924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Baek, G., Tse, Y. F., Hu, Z., Cox, D., Buboltz, N., McCue, P., Yeo, C. J., White, M. A., DeBerardinis, R. J., Knudsen, E. S., & Witkiewicz, A. K. (2014). MCT4 defines a glycolytic subtype of pancreatic cancer with poor prognosis and unique metabolic dependencies. Cell Reports, 9(6), 2233–2249.

    Article  CAS  PubMed  Google Scholar 

  150. Chaika, N. V., Gebregiworgis, T., Lewallen, M. E., Purohit, V., Radhakrish-nan, P., Liu, X., Zhang, B., Mehla, K., Brown, R. B., Caffrey, T., Yu, F., Johnson, K. R., Powers, R., Hollingsworth, M. A., & Singh, P. K. (2012). MUC1 mucin stabilizes and activates hypoxia-inducible factor 1 alpha to regulate metabolism in pancreatic cancer. Proceedings of the National Academy of Sciences of the United States of America, 109(34), 13787–13792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Shi, M., Cui, J., Du, J., Wei, D., Jia, Z., Zhang, J., Zhu, Z., Gao, Y., & Xie, K. (2014). A novel KLF4/LDHA signaling pathway regulates aerobic glycolysis in and progression of pancreatic cancer. Clinical Cancer Research, 20(16), 4370–4380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Swierczynski, J., Hebanowska, A., & Sledzinski, T. (2014). Role of abnor-mal lipid metabolism in development, progression, diagnosis and therapy of pancreatic cancer. World Journal of Gastroenterology, 20(9), 2279–2303.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Hatzivassiliou, G., Zhao, F., Bauer, D. E., Andreadis, C., Shaw, A. N., Dhanak, D., Hingorani, S. R., Tuveson, D. A., & Thompson, C. B. (2005). ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell, 8(4), 311–321.

    Article  CAS  PubMed  Google Scholar 

  154. Takahashi, M., Hori, M., Ishigamori, R., Mutoh, M., Imai, T., & Nakagama, H. (2018). Fatty pancreas: a possible risk factor for pancreatic cancer in animals and humans. Cancer Science, 109(10), 3013–3023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Waddington, C. H. (1942). The epigenotype. Endeavour., 1, 18–20.

    Google Scholar 

  156. Bonasio, R., Tu, S., & Reinberg, D. (2010). Molecular signals of epigenetic states. Science, 330(6004), 612–616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Berger, S. L., Kouzarides, T., Shiekhattar, R., & Shilatifard, A. (2009). An operational definition of epigenetics. Genes & Development, 23(7), 781–783.

    Article  CAS  Google Scholar 

  158. Okano, M., Xie, S., & Li, E. (1998). Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nature Genetics, 19(3), 219–220.

    Article  CAS  PubMed  Google Scholar 

  159. Yen, R. W., Vertino, P. M., Nelkin, B. D., et al. (1992). Isolation and characterization of the cDNA encoding human DNA methyltransferase. Nucleic Acids Research, 20(9), 2287–2291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Li, A., Omura, N., Hong, S. M., & Goggins, M. (2010). Pancreatic cancer DNMT1 expression and sensitivity to DNMT1 inhibitors. Cancer Biology & Therapy, 9(4), 321–329.

    Article  CAS  Google Scholar 

  161. Yoder, J. A., Walsh, C. P., & Bestor, T. H. (1997). Cytosine methylation and the ecology of intragenomic parasites. Trends in Genetics, 13(8), 335–340.

    Article  CAS  PubMed  Google Scholar 

  162. McCabe, M. T., Brandes, J. C., & Vertino, P. M. (2009). Cancer DNA methylation: molecular mechanisms and clinical implications. Clinical Cancer Research, 15(12), 3927–3937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Saxonov, S., Berg, P., & Brutlag, D. L. (2006). A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proceedings of the National Academy of Sciences, 103(5), 1412–1417.

    Article  CAS  Google Scholar 

  164. Coulondre, C., Miller, J. H., Farabaugh, P. J., & Gilbert, W. (1978). Molecular basis of base substitution hotspots in Escherichia coli. Nature., 274(5673), 775.

    Article  CAS  PubMed  Google Scholar 

  165. Hendrich, B., Hardeland, U., Ng, H. H., Jiricny, J., & Bird, A. (2000). correction: The thymine glycosylase MBD4 can bind to the product of deamination at methylated CpG sites. Nature, 404(6777), 525.

    Article  CAS  Google Scholar 

  166. Walsh, C. P., & Xu, G. L. Cytosine methylation and DNA repair. InDNA Methylation: Basic Mechanisms 2006 (pp. 283-315). Springer, Berlin. Heidelberg.

  167. Coetzee, G. A., Olumi, A. F., Spruck, C. H., & Jones, P. A. (1991). 5-Methylcytosine as an endogenous mutagen in the p53 tumor suppressor gene. InPrincess Takamatsu Symposia, 22, 207–219.

    Google Scholar 

  168. Morgan, H. D., Santos, F., Green, K., Dean, W., & Reik, W. (2005). Epigenetic reprogramming in mammals. Human Molecular Genetics, 14(suppl_1), R47–R58.

    Article  CAS  PubMed  Google Scholar 

  169. Bhutani, N., Burns, D. M., & Blau, H. M. (2011). DNA demethylation dynamics. Cell., 146(6), 866–872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Ito, S., D’Alessio, A. C., Taranova, O. V., Hong, K., Sowers, L. C., & Zhang, Y. (2010). Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature., 466(7310), 1129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Li, J., Zhu, J., Hassan, M. M., Evans, D. B., Abbruzzese, J. L., & Li, D. (2007). K-ras mutation and p16 and preproenkephalin promoter hypermethylation in plasma DNA of pancreatic cancer patients: in relation to cigarette smoking. Pancreas., 34(1), 55.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Tang, B., Li, Y., Qi, G., Yuan, S., Wang, Z., Yu, S., Li, B., & He, S. (2015). Clinicopathological significance of CDKN2A promoter hypermethylation frequency with pancreatic cancer. Scientific Reports, 5, 13563.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Matsuoka, S., Edwards, M. C., Bai, C., et al. (1995). p57KIP2, a structurally distinct member of the p21CIP1 Cdk inhibitor family, is a candidate tumor suppressor gene. Genes & Development, 9(6), 650–662.

    Article  CAS  Google Scholar 

  174. Sato, N., Matsubayashi, H., Abe, T., Fukushima, N., & Goggins, M. (2005). Epigenetic down-regulation of CDKN1C/p57KIP2 in pancreatic ductal neoplasms identified by gene expression profiling. Clinical Cancer Research, 11(13), 4681–4688.

    Article  CAS  PubMed  Google Scholar 

  175. Sherr, C. J. (1995). D-type cyclins. Trends in Biochemical Sciences, 20(5), 187–190.

    Article  CAS  PubMed  Google Scholar 

  176. Meyyappan, M., Wong, H., Hull, C., & Riabowol, K. T. (1998). Increased expression of cyclin D2 during multiple states of growth arrest in primary and established cells. Molecular and Cellular Biology, 18(6), 3163–3172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Terris, B., Blaveri, E., Crnogorac-Jurcevic, T., Jones, M., Missiaglia, E., Ruszniewski, P., Sauvanet, A., & Lemoine, N. R. (2002). Characterization of gene expression profiles in intraductal papillary-mucinous tumors of the pancreas. The American Journal of Pathology., 160(5), 1745–1754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Matsubayashi, H., Sato, N., Fukushima, N., Yeo, C. J., Walter, K. M., Brune, K., Sahin, F., Hruban, R. H., & Goggins, M. (2003). Methylation of cyclin D2 is observed frequently in pancreatic cancer but is also an age-related phenomenon in gastrointestinal tissues. Clinical Cancer Research, 9(4), 1446–1452.

    CAS  PubMed  Google Scholar 

  179. Li, J., Zhu, J., Hassan, M. M., Evans, D. B., Abbruzzese, J. L., & Li, D. (2007). K-ras mutation and p16 and preproenkephalin promoter hypermethylation in plasma DNA of pancreatic cancer patients: in relation to cigarette smoking. Pancreas., 34(1), 55.

    Article  PubMed  PubMed Central  Google Scholar 

  180. Zagon, I. S., Roesener, C. D., Verderame, M. F., Ohlsson-Wilhelm, B. M., Levin, R. J., & McLaughlin, P. J. (2000). Opioid growth factor regulates the cell cycle of human neoplasias. International Journal of Oncology, 17(5), 1053–1114.

    CAS  PubMed  Google Scholar 

  181. Comb, M., & Goodman, H. M. (1990). CpG methylation inhibits proenkephalin gene expression and binding of the transcription factor AP-2. Nucleic Acids Research, 18(13), 3975–3982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Fukushima, N., Sato, N., Ueki, T., Rosty, C., Walter, K. M., Wilentz, R. E., Yeo, C. J., Hruban, R. H., & Goggins, M. (2002). Aberrant methylation of preproenkephalin and p16 genes in pancreatic intraepithelial neoplasia and pancreatic ductal adenocarcinoma. The American Journal of Pathology., 160(5), 1573–1581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Wen, Z., Zhong, Z., & Darnell Jr., J. E. (1995). Maximal activation of transcription by Statl and Stat3 requires both tyrosine and serine phosphorylation. Cell., 82(2), 241–250.

    Article  CAS  PubMed  Google Scholar 

  184. Naka, T., Narazaki, M., Hirata, M., Matsumoto, T., Minamoto, S., Aono, A., Nishimoto, N., Kajita, T., Taga, T., Yoshizaki, K., & Akira, S. (1997). Structure and function of a new STAT-induced STAT inhibitor. Nature., 387(6636), 924.

    Article  CAS  PubMed  Google Scholar 

  185. Komazaki, T., Nagai, H., Emi, M., Terada, Y., Yabe, A., Jin, E., Kawanami, O., Konishi, N., Moriyama, Y., Naka, T., & Kishimoto, T. (2004). Hypermethylation-associated inactivation of the SOCS-1 gene, a JAK/STAT inhibitor, in human pancreatic cancers. Japanese Journal of Clinical Oncology, 34(4), 191–194.

    Article  PubMed  Google Scholar 

  186. Mah, K. M., & Weiner, J. A. (2017). Regulation of Wnt signaling by protocadherins. InSeminars in Cell & Developmental Biology, 69, 158–171 Academic Press.

    CAS  Google Scholar 

  187. Vincent, A., Omura, N., Hong, S. M., Jaffe, A., Eshleman, J., & Goggins, M. (2011). Genome-wide analysis of promoter methylation associated with gene expression profile in pancreatic adenocarcinoma. Clinical Cancer Research, 17(13), 4341–4354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Curia, M. C., Fantini, F., Lattanzio, R., Tavano, F., Di Mola, F., Piantelli, M., Battista, P., Di Sebastiano, P., & Cama, A. (2019). High methylation levels of PCDH10 predict poor prognosis in patients with pancreatic ductal adenocarcinoma. BMC Cancer, 19(1), 452.

    Article  PubMed  PubMed Central  Google Scholar 

  189. Christoffels, V. M., Keijser, A. G., Houweling, A. C., Clout, D. E., & Moorman, A. F. (2000). Patterning the embryonic heart: identification of five mouse Iroquois homeobox genes in the developing heart. Developmental Biology, 224(2), 263–274.

    Article  CAS  PubMed  Google Scholar 

  190. Chakma, K., Gu, Z., Motoi, F., Unno, M., Horii, A., & Fukushige, S. (2019). DNA hypermethylation of IRX4 is a frequent event that may confer growth advantage to pancreatic cancer cells., 01, 821–821.

  191. Eissa, M. A., Lerner, L., Abdelfatah, E., Shankar, N., Canner, J. K., Hasan, N. M., Yaghoobi, V., Huang, B., Kerner, Z., Takaesu, F., & Wolfgang, C. (2019). Promoter methylation of ADAMTS1 and BNC1 as potential biomarkers for early detection of pancreatic cancer in blood. Clinical Epigenetics, 11(1), 59.

    Article  PubMed  PubMed Central  Google Scholar 

  192. Sato, N., Fukushima, N., Matsubayashi, H., Iacobuzio-Donahue, C. A., Yeo, C. J., & Goggins, M. (2006). Aberrant methylation of Reprimo correlates with genetic instability and predicts poor prognosis in pancreatic ductal adenocarcinoma. Cancer., 107(2), 251–257.

    Article  CAS  PubMed  Google Scholar 

  193. Ueki, T., Toyota, M., Sohn, T., Yeo, C. J., Issa, J. P., Hruban, R. H., & Goggins, M. (2000). Hypermethylation of multiple genes in pancreatic adenocarcinoma. Cancer Research, 60(7), 1835–1839.

    CAS  PubMed  Google Scholar 

  194. Sato, N., Fukushima, N., Maitra, A., Matsubayashi, H., Yeo, C. J., Cameron, J. L., Hruban, R. H., & Goggins, M. (2003). Discovery of novel targets for aberrant methylation in pancreatic carcinoma using high-throughput microarrays. Cancer Research, 63(13), 3735–3742.

    CAS  PubMed  Google Scholar 

  195. Li, A., Omura, N., Hong, S. M., Vincent, A., Walter, K., Griffith, M., Borges, M., & Goggins, M. (2010). Pancreatic cancers epigenetically silence SIP1 and hypomethylate and overexpress miR-200a/200b in association with elevated circulating miR-200a and miR-200b levels. Cancer Research, 70(13), 5226–5237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Sato, N., Fukushima, N., Maehara, N., Matsubayashi, H., Koopmann, J., Su, G. H., Hruban, R. H., & Goggins, M. (2003). SPARC/osteonectin is a frequent target for aberrant methylation in pancreatic adenocarcinoma and a mediator of tumor–stromal interactions. Oncogene., 22(32), 5021.

    Article  CAS  PubMed  Google Scholar 

  197. Omura, N., Li, C. P., Li, A., Hong, S. M., Walter, K., Jimeno, A., Hidalgo, M., & Goggins, M. (2008). Genome-wide profiling at methylated promoters in pancreatic adenocarcinoma. Cancer Biology & Therapy, 7(7), 1146–1156.

    Article  CAS  Google Scholar 

  198. Li, J., Wu, H., Li, W., Yin, L., Guo, S., Xu, X., Ouyang, Y., Zhao, Z., Liu, S., Tian, Y., & Tian, Z. (2016). Downregulated miR-506 expression facilitates pancreatic cancer progression and chemoresistance via SPHK1/Akt/NF-κB signaling. Oncogene., 35(42), 5501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Vincent, A., Omura, N., Hong, S. M., Jaffe, A., Eshleman, J., & Goggins, M. (2011). Genome-wide analysis of promoter methylation associated with gene expression profile in pancreatic adenocarcinoma. Clinical Cancer Research, 17(13), 4341–4354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Thompson, M. J., Rubbi, L., Dawson, D. W., Donahue, T. R., & Pellegrini, M. (2015). Pancreatic cancer patient survival correlates with DNA methylation of pancreas development genes. PLoS One, 10(6), e0128814.

    Article  PubMed  PubMed Central  Google Scholar 

  201. Gama-Sosa, M. A., Slagel, V. A., Trewyn, R. W., et al. (1983). The 5- methylcytosine content of DNA from human tumors. Nucleic Acids Research, 11, 6883–6894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Feinberg, A. P., Vogelstein, B., et al. (1983). Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature., 301, 89–92.

    Article  CAS  PubMed  Google Scholar 

  203. Rauch, T. A., Zhong, X., Wu, X., et al. (2008). High-resolution mapping of DNA hypermethylation and hypomethylation in lung cancer. Proceedings of the National Academy of Sciences of the United States of America, 105, 252–257.

    Article  CAS  PubMed  Google Scholar 

  204. Ehrlich, M. (2002). DNA methylation in cancer: too much, but also too little. Oncogene., 21, 5400–5413.

    Article  CAS  PubMed  Google Scholar 

  205. Ohike, N., Maass, N., Mundhenke, C., et al. (2003). Clinicopathological significance and molecular regulation of maspin expression in ductal adenocarcinoma of the pancreas. Cancer Letters, 199(2), 193–200.

    Article  CAS  PubMed  Google Scholar 

  206. Sato, N., Maitra, A., Fukushima, N., et al. (2003). Frequent hypomethylation of multiple genes overexpressed in pancreatic ductal adenocarcinoma. Cancer Research, 63(14), 4158–4166.

    CAS  PubMed  Google Scholar 

  207. Chen, H., Kong, Y., Yao, Q., Zhang, X., Fu, Y., Li, J., Liu, C., & Wang, Z. (2019). Three hypomethylated genes were associated with poor overall survival in pancreatic cancer patients. Aging (Albany NY), 11(3), 885.

    Article  CAS  Google Scholar 

  208. Zhu, Y., Zhang, J. J., Zhu, R., Zhu, Y., Liang, W. B., Gao, W. T., Yu, J. B., Xu, Z. K., & Miao, Y. (2011). The increase in the expression and hypomethylation of MUC4 gene with the progression of pancreatic ductal adenocarcinoma. Medical Oncology, 28(1), 175–184.

    Article  CAS  Google Scholar 

  209. Sekine, H., Chen, N., Sato, K., Saiki, Y., Yoshino, Y., Umetsu, Y., Jin, G., Nagase, H., Gu, Z., Fukushige, S., & Sunamura, M. (2012). S100A4, frequently overexpressed in various human cancers, accelerates cell motility in pancreatic cancer cells. Biochemical and Biophysical Research Communications, 429(3-4), 214–219.

    Article  CAS  PubMed  Google Scholar 

  210. Feinberg, A. P., Koldobskiy, M. A., & Göndör, A. (2016). Epigenetic modulators, modifiers and mediators in cancer aetiology and progression. Nature Reviews. Genetics, 17(5), 284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Abukiwan A, Berger MR. Epigenetics: dissecting gene expression alteration in PDAC. In Advances in DNA Repair 2018 Nov 5. IntechOpen.

  212. Ramassone, A., Pagotto, S., Veronese, A., & Visone, R. (2018). Epigenetics and microRNAs in cancer. International Journal of Molecular Sciences, 19(2), 459.

    Article  PubMed Central  Google Scholar 

  213. Iguchi, E., Safgren, S. L., Marks, D. L., Olson, R. L., & Fernandez-Zapico, M. E. (2016). Focus: epigenetics: pancreatic cancer, a mis-interpreter of the epigenetic language. The Yale Journal of Biology and Medicine., 89(4), 575.

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Fernandez, A. F., Assenov, Y., Martin-Subero, J. I., Balint, B., Siebert, R., Taniguchi, H., Yamamoto, H., Hidalgo, M., Tan, A. C., Galm, O., et al. (2012). A DNA methylation fingerprint of 1628 human samples. Genome Research, 22(2), 407–419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Hao, X., Luo, H., Krawczyk, M., Wei, W., Wang, W., Wang, J., Flagg, K., Hou, J., Zhang, H., Yi, S., et al. (2017). DNA methylation markers for diagnosis and prognosis of common cancers. Proceedings of the National Academy of Sciences of the United States of America, 114(28), 7414–7419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Rodríguez-Rodero, S., Fernández, A. F., Fernández-Morera, J. L., Castro-Santos, P., Bayon, G. F., Ferrero, C., Urdinguio, R. G., Gonzalez-Marquez, R., Suarez, C., Fernández-Vega, I., & Fresno Forcelledo, M. F. (2013). DNA methylation signatures identify biologically distinct thyroid cancer subtypes. The Journal of Clinical Endocrinology & Metabolism., 98(7), 2811–2821.

    Article  Google Scholar 

  217. Baylin, S. B., & Jones, P. A. (2011). A decade of exploring the cancer epigenome – biological and translational implications. Nature Reviews. Cancer, 11(10), 726–734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Moran, S., Martinez-Cardus, A., Sayols, S., Musulen, E., Balana, C., Estival-Gonzalez, A., Moutinho, C., Heyn, H., Diaz-Lagares, A., de Moura, M. C., et al. (2016). Epigenetic profiling to classify cancer of unknown primary: a multicentre, retrospective analysis. The Lancet Oncology, 17(10), 1386–1395.

    Article  PubMed  Google Scholar 

  219. Kanwal, R., & Gupta, S. (2012). Epigenetic modifications in cancer. Clinical Genetics, 81(4), 303–311.

    Article  CAS  PubMed  Google Scholar 

  220. Hosseini A, Minucci S (2018). Alterations of histone modifications in cancer. In: Epigenetics in human disease, vol. 6. 2nd ed; p. 141–217.

  221. Baylin, S. B., & Jones, P. A. (2016). Epigenetic determinants of cancer. Cold Spring Harbor Perspectives in Biology, 8, 9.

    Article  Google Scholar 

  222. Berdasco, M., & Esteller, M. (2018). Clinical epigenetics: seizing opportunities for translation. Nature Reviews. Genetics.

  223. Rodriguez-Paredes, M., & Esteller, M. (2011). Cancer epigenetics reaches mainstream oncology. Nature Medicine, 17(3), 330–339.

    Article  CAS  PubMed  Google Scholar 

  224. Allis, C. D., & Jenuwein, T. (2016). The molecular hallmarks of epigenetic control. Nature Reviews. Genetics, 17(8), 487–500.

    Article  CAS  PubMed  Google Scholar 

  225. Herman, J. G., & Baylin, S. B. (2003). Gene silencing in cancer in association with promoter hypermethylation. The New England Journal of Medicine, 349(21), 2042–2054.

    Article  CAS  PubMed  Google Scholar 

  226. Palii, S. S., Van Emburgh, B. O., Sankpal, U. T., Brown, K. D., & Robertson, K. D. (2008). DNA methylation inhibitor 5-Aza-2′-deoxycytidine induces reversible genomewide DNA damage that is distinctly influenced by DNA methyltransferases 1 and 3B. Molecular and Cellular Biology, 28(2), 752–771.

    Article  CAS  PubMed  Google Scholar 

  227. Chiappinelli, K. B., Strissel, P. L., Desrichard, A., Li, H., Henke, C., Akman, B., Hein, A., Rote, N. S., Cope, L. M., Snyder, A., et al. (2015). Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell., 162(5), 974–986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Roulois, D., Loo Yau, H., Singhania, R., Wang, Y., Danesh, A., Shen, S. Y., Han, H., Liang, G., Jones, P. A., Pugh, T. J., et al. (2015). DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell., 162(5), 961–973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Xue, K., Gu, J. J., Zhang, Q., Mavis, C., Hernandez-Ilizaliturri, F. J., Czuczman, M. S., & Guo, Y. (2016). Vorinostat, a histone deacetylase (HDAC) inhibitor, promotes cell cycle arrest and re-sensitizes rituximab- and chemo-resistant lymphoma cells to chemotherapy agents. Journal of Cancer Research and Clinical Oncology, 142(2), 379–387.

    Article  CAS  PubMed  Google Scholar 

  230. Kronfol, M. M., Dozmorov, M. G., Huang, R., Slattum, P. W., & McClay, J. L. (2017). The role of epigenomics in personalized medicine. Expert Rev Precis Med Drug Dev., 2(1), 33–45.

    Article  PubMed  PubMed Central  Google Scholar 

  231. Cameron, E. E., Bachman, K. E., Myohanen, S., Herman, J. G., & Baylin, S. B. (1999). Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nature Genetics, 21(1), 103–107.

    Article  CAS  PubMed  Google Scholar 

  232. Juergens, R. A., Wrangle, J., Vendetti, F. P., Murphy, S. C., Zhao, M., Coleman, B., Sebree, R., Rodgers, K., Hooker, C. M., Franco, N., et al. (2011). Combination epigenetic therapy has efficacy in patients with refractory advanced non-small cell lung cancer. Cancer Discovery, 1(7), 598–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Jones, P. A., Issa, J. P., & Baylin, S. (2016). Targeting the cancer epigenome for therapy. Nature Reviews. Genetics, 17(10), 630–641.

    Article  CAS  PubMed  Google Scholar 

  234. Ezzati, M., Henley, S. J., Lopez, A. D., & Thun, M. J. (2005). Role of smoking in global and regional cancer epidemiology: current patterns and data needs. International Journal of Cancer, 116(6), 963–971.

    Article  CAS  PubMed  Google Scholar 

  235. Jarosz, M., Sekuła, W., & Rychlik, E. (2012). Influence of diet and tobacco smoking on pancreatic cancer incidence in Poland in 1960–2008. Gastroenterology Research and Practice, 2012.

  236. Wang, Y. T., Gou, Y. W., Jin, W. W., Xiao, M., & Fang, H. Y. (2016). Association between alcohol intake and the risk of pancreatic cancer: a dose–response meta-analysis of cohort studies. BMC Cancer, 16(1), 212.

    Article  PubMed  PubMed Central  Google Scholar 

  237. Jacobs, E. J., Chanock, S. J., Fuchs, C. S., LaCroix, A., McWilliams, R. R., Steplowski, E., Stolzenberg-Solomon, R. Z., Arslan, A. A., Bueno-de-Mesquita, H. B., Gross, M., & Helzlsouer, K. (2010). Family history of cancer and risk of pancreatic cancer: a pooled analysis from the Pancreatic Cancer Cohort Consortium (PanScan). International Journal of Cancer, 127(6), 1421–1428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Davoodi, S. H., Malek-Shahabi, T., Malekshahi-Moghadam, A., Shahbazi, R., & Esmaeili, S. (2013). Obesity as an important risk factor for certain types of cancer. Iranian Journal of Cancer Prevention., 6(4), 186.

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Aune, D., Greenwood, D. C., Chan, D. S., Vieira, R., Vieira, A. R., Navarro Rosenblatt, D. A., Cade, J. E., Burley, V. J., & Norat, T. (2011). Body mass index, abdominal fatness and pancreatic cancer risk: a systematic review and non-linear dose–response meta-analysis of prospective studies. Annals of Oncology, 23(4), 843–852.

    Article  PubMed  Google Scholar 

  240. Rawla, P., Sunkara, T., & Gaduputi, V. (2019). Epidemiology of pancreatic cancer: global trends, etiology and risk factors. World Journal of Oncology., 10(1), 10.

    Article  PubMed  PubMed Central  Google Scholar 

  241. Ghiorzo, P. (2014). Genetic predisposition to pancreatic cancer. World Journal of Gastroenterology, 20(31), 10778.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The study was supported by Natural Science Foundation China (Grant # 81702802) and Beijing Municipal Education Commission (Grant# KM201810005032 and Grant# KM201810005005).

Author information

Authors and Affiliations

Authors

Contributions

Aamir Ali Khan and Xinhui Liu conceive the idea and write manuscripts of this study. Muhammad Tahir and Xinlong Yan write the abstract and make tables, respectively. Aamir Ali Khan and Sakhawat Ali make the figures. Hua Huang and Xinlong Yan critically revise the manuscript and provide supervision.

Corresponding authors

Correspondence to Xinlong Yan or Hua Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participant/animals

No human participant or animal was involved in this study.

Informed consent

Not applicable

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A.A., Liu, X., Yan, X. et al. An overview of genetic mutations and epigenetic signatures in the course of pancreatic cancer progression. Cancer Metastasis Rev 40, 245–272 (2021). https://doi.org/10.1007/s10555-020-09952-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-020-09952-0

Keywords

Navigation