Skip to main content

Advertisement

Log in

Immunotherapy in pediatric acute lymphoblastic leukemia

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

The 5-year survival rate for children and adolescents with acute lymphoblastic leukemia (ALL) has improved to more than 90% in high-income countries. However, further increases in the intensity of conventional chemotherapy would be associated with significant adverse effects; therefore, novel approaches are necessary. The last decade has seen significant advances in targeted therapy with immunotherapy and molecular therapeutics, as well as advances in risk stratification for therapy based on somatic and germline genetic analysis and monitoring of minimal residual disease. For immunotherapy, the approval of antibody-based therapy (with blinatumomab in 2014 and inotuzumab ozogamicin in 2017) and T cell–based therapy (with tisagenlecleucel in 2017) by the US Food and Drug Administration has significantly improved the response rate and outcomes in patients with relapsed/refractory B-ALL. These strategies have also been tested in the frontline setting, and immunotherapy against a new ALL-associated antigen has been developed. Incorporating effective immunotherapy into ALL therapy would enable the intensity of conventional chemotherapy to be decreased and thereby reduce associated toxicity, leading to further improvement in survival and quality of life for patients with ALL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pui, C. H., Nichols, K. E., & Yang, J. J. (2019). Somatic and germline genomics in paediatric acute lymphoblastic leukaemia. Nature Reviews Clinical Oncology, 16(4), 227–240.

    CAS  PubMed  Google Scholar 

  2. Pui, C. H., Yang, J. J., Hunger, S. P., Pieters, R., Schrappe, M., Biondi, A., Vora, A., Baruchel, A., Silverman, L. B., Schmiegelow, K., Escherich, G., Horibe, K., Benoit, Y. C., Izraeli, S., Yeoh, A. E., Liang, D. C., Downing, J. R., Evans, W. E., Relling, M. V., & Mullighan, C. G. (2015). Childhood acute lymphoblastic leukemia: progress through collaboration. Journal of Clinical Oncology, 33(27), 2938–2948.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Jeha, S., Pei, D., Choi, J., Cheng, C., Sandlund, J. T., Coustan-Smith, E., et al. (2019). Improved CNS control of childhood acute lymphoblastic leukemia without cranial irradiation: St Jude Total Therapy Study 16. Journal of Clinical Oncology. https://doi.org/10.1200/JCO.19.01692.

    PubMed  PubMed Central  Google Scholar 

  4. Pui, C. H., Campana, D., Pei, D., Bowman, W. P., Sandlund, J. T., Kaste, S. C., et al. (2009). Treating childhood acute lymphoblastic leukemia without cranial irradiation. New England Journal of Medicine, 360(26), 2730–2741.

    CAS  Google Scholar 

  5. Teachey, D. T., & Pui, C. H. (2019). Comparative features and outcomes between paediatric T-cell and B-cell acute lymphoblastic leukaemia. The Lancet Oncology, 20(3), e142–e154.

    PubMed  Google Scholar 

  6. Löffler, A., Kufer, P., Lutterbüse, R., Zettle, F., Daniel, P. T., Schwenkenbecher, J. M., et al. (2000). A recombinant bispecific single-chain antibody, CD19 x CD3, induces rapid and high lymphoma-directed cytotoxicity by unstimulated T lymphocytes. Blood, 95(96), 2098–2103.

    PubMed  Google Scholar 

  7. Bargou, R., Leo, E., Zugmaier, G., Klinger, M., Goebeler, M., Knop, S., Noppeney, R., Viardot, A., Hess, G., Schuler, M., Einsele, H., Brandl, C., Wolf, A., Kirchinger, P., Klappers, P., Schmidt, M., Riethmüller, G., Reinhardt, C., Baeuerle, P. A., & Kufer, P. (2008). Tumor regression in cancer patients by very low doses of a T cell–engaging antibody. Science, 321(5891), 974–977.

    CAS  PubMed  Google Scholar 

  8. Topp, M. S., Kufer, P., Gökbuget, N., Goebeler, M., Klinger, M., Neumann, S., et al. (2011). Targeted therapy with the T-cell–engaging antibody blinatumomab of chemotherapy-refractory minimal residual disease in B-lineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free survival. Journal of Clinical Oncology, 29(18), 2493–2498.

    CAS  PubMed  Google Scholar 

  9. Topp, M. S., Gökbuget, N., Zugmaier, G., Degenhard, E., Goebeler, M. E., Klinger, M., Neumann, S. A., Horst, H. A., Raff, T., Viardot, A., Stelljes, M., Schaich, M., Köhne-Volland, R., Brüggemann, M., Ottmann, O. G., Burmeister, T., Baeuerle, P. A., Nagorsen, D., Schmidt, M., Einsele, H., Riethmüller, G., Kneba, M., Hoelzer, D., Kufer, P., & Bargou, R. C. (2012). Long-term follow-up of hematologic relapse-free survival in a phase 2 study of blinatumomab in patients with MRD in B-lineage ALL. Blood, 120(26), 5185–5187.

    CAS  PubMed  Google Scholar 

  10. Topp, M. S., Gökbuget, N., Stein, A. S., Zugmaier, G., O’Brien, S., Bargou, R. C., et al. (2015). Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: a multicentre, single-arm, phase 2 study. The Lancet Oncology, 16(1), 57–66.

    CAS  PubMed  Google Scholar 

  11. Kantarjian, H. M., Stein, A. S., Bargou, R. C., Grande Garcia, C., Larson, R. A., Stelljes, M., Gökbuget, N., Zugmaier, G., Benjamin, J. E., Zhang, A., Jia, C., & Topp, M. S. (2016). Blinatumomab treatment of older adults with relapsed/refractory B-precursor acute lymphoblastic leukemia: results from 2 phase 2 studies. Cancer, 122(14), 2178–2185.

    CAS  PubMed  Google Scholar 

  12. Stein, A. S., Kantarjian, H., Gökbuget, N., Bargou, R., Litzow, M. R., Rambaldi, A., Ribera, J. M., Zhang, A., Zimmerman, Z., Zugmaier, G., & Topp, M. S. (2019). Blinatumomab for acute lymphoblastic leukemia relapse after allogeneic hematopoietic stem cell transplantation. Biology of Blood and Marrow Transplantation, 25(8), 1498–1504.

    CAS  PubMed  Google Scholar 

  13. Przepiorka, D., Ko, C. W., Deisseroth, A., Yancey, C. L., Candau-Chacon, R., Chiu, H. J., Gehrke, B. J., Gomez-Broughton, C., Kane, R. C., Kirshner, S., Mehrotra, N., Ricks, T. K., Schmiel, D., Song, P., Zhao, P., Zhou, Q., Farrell, A. T., & Pazdur, R. (2015). FDA approval: blinatumomab. Clinical Cancer Research, 21(18), 4035–4039.

    CAS  PubMed  Google Scholar 

  14. Kantarjian, H., Stein, A., Gökbuget, N., Fielding, A. K., Schuh, A. C., Ribera, J. M., et al. (2017). Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. New England Journal of Medicine, 376(9), 836–847.

    CAS  Google Scholar 

  15. Gökbuget, N., Dombret, H., Bonifacio, M., Reichle, A., Graux, C., Faul, C., et al. (2018). Blinatumomab for minimal residual disease in adults with B-cell precursor acute lymphoblastic leukemia. Blood, 131(14), 1522–1531.

    PubMed  PubMed Central  Google Scholar 

  16. Brown, P. (2018). Blinatumomab for MRD+ B-ALL: The evidence strengthens. Blood, 131(14), 1497–1498.

    CAS  PubMed  Google Scholar 

  17. Jen, E. Y., Xu, Q., Schetter, A., Przepiorka, D., Shen, Y. L., Roscoe, D., et al. (2019). FDA approval: blinatumomab for patients with B-cell precursor acute lymphoblastic leukemia in morphologic remission with minimal residual disease. Clinical Cancer Research, 25(2), 473–477.

    PubMed  Google Scholar 

  18. Martinelli, G., Boissel, N., Chevallier, P., Ottmann, O., Gökbuget, N., Topp, M. S., Fielding, A. K., Rambaldi, A., Ritchie, E. K., Papayannidis, C., Sterling, L. R., Benjamin, J., & Stein, A. (2017). Complete hematologic and molecular response in adult patients with relapsed/refractory Philadelphia chromosome–positive B-precursor acute lymphoblastic leukemia following treatment with blinatumomab: results from a phase II, single-arm, multicenter study. Journal of Clinical Oncology, 35(16), 1795–1802.

    CAS  PubMed  Google Scholar 

  19. Assi, R., Kantarjian, H., Short, N. J., Daver, N., Takahashi, K., Garcia-Manero, G., et al. (2017). Safety and efficacy of blinatumomab in combination with a tyrosine kinase inhibitor for the treatment of relapsed Philadelphia chromosome–positive leukemia. Clinical Lymphoma, Myeloma, and Leukemia, 17(12), 897–901.

    Google Scholar 

  20. Klinger, M., Brandl, C., Zugmaier, G., Hijazi, Y., Bargou, R. C., Topp, M. S., Gökbuget, N., Neumann, S., Goebeler, M., Viardot, A., Stelljes, M., Brüggemann, M., Hoelzer, D., Degenhard, E., Nagorsen, D., Baeuerle, P. A., Wolf, A., & Kufer, P. (2012). Immunopharmacologic response of patients with B-lineage acute lymphoblastic leukemia to continuous infusion of T cell–engaging CD19/CD3-bispecific BiTE antibody blinatumomab. Blood, 119(26), 6226–6233.

    CAS  PubMed  Google Scholar 

  21. Zugmaier, G., Gökbuget, N., Klinger, M., Viardot, A., Stelljes, M., Neumann, S., Horst, H. A., Marks, R., Faul, C., Diedrich, H., Reichle, A., Brüggemann, M., Holland, C., Schmidt, M., Einsele, H., Bargou, R. C., & Topp, M. S. (2015). Long-term survival and T-cell kinetics in relapsed/refractory ALL patients who achieved MRD response after blinatumomab treatment. Blood, 126(24), 2578–2584.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. von Stackelberg, A., Locatelli, F., Zugmaier, G., Handgretinger, R., Tripplett, T. M., Rizzari, C., et al. (2016). Phase I/phase II study of blinatumomab in pediatric patients with relapsed/refractory acute lymphoblastic leukemia. Journal of Clinical Oncology, 34(36), 4381–4389.

    Google Scholar 

  23. Amgen (2019). Amgen announces positive results from two phase 3 BLINCYTO® (blinatumomab) studies in pediatric patients with relapsed acute lymphoblastic leukemia. https://www.amgen.com/media/news-releases/2019/09/amgen-announces-positive-results-from-two-phase-3-blincyto-blinatumomab-studies-in-pediatric-patients-with-relapsed-acute-lymphoblastic-leukemia/. Accessed 21 Nov 2019.

  24. Elitzur, S., Arad-Cohen, N., Barzilai-Birenboim, S., Ben-Harush, M., Bielorai, B., Elhasid, R., Feuerstein, T., Gilad, G., Gural, A., Kharit, M., Litichever, N., Nirel, R., Weinreb, S., Wolach, O., Toren, A., Izraeli, S., & Jacoby, E. (2019). Blinatumomab as a bridge to further therapy in cases of overwhelming toxicity in pediatric B-cell precursor acute lymphoblastic leukemia: report from the Israeli Study Group of Childhood Leukemia. Pediatric Blood & Cancer, 66(10), e27898.

    Google Scholar 

  25. Keating, A. K., Gossai, N., Phillips, C. L., Maloney, K., Campbell, K., Doan, A., Bhojwani, D., Burke, M. J., & Verneris, M. R. (2019). Reducing minimal residual disease with blinatumomab prior to HCT for pediatric patients with acute lymphoblastic leukemia. Blood Advances, 3(13), 1926–1929.

    PubMed  PubMed Central  Google Scholar 

  26. Topp, M. S., Zimmerman, Z., Cannell, P., Dombret, H., Maertens, J., Stein, A., Franklin, J., Tran, Q., Cong, Z., & Schuh, A. C. (2018). Health-related quality of life in adults with relapsed/refractory acute lymphoblastic leukemia treated with blinatumomab. Blood, 131(26), 2906–2914.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Prescribing information. Blincyto® (blinatumomab) injection.

  28. Jain, T., & Litzow, M. R. (2018). No free rides: management of toxicities of novel immunotherapies in ALL, including financial. Hematology, American Society of Hematology Education Program, 2018(1), 25–34.

    Google Scholar 

  29. Teachey, D. T., Rheingold, S. R., Maude, S. L., Zugmaier, G., Barrett, D. M., Seif, A. E., Nichols, K. E., Suppa, E. K., Kalos, M., Berg, R. A., Fitzgerald, J. C., Aplenc, R., Gore, L., & Grupp, S. A. (2013). Cytokine release syndrome after blinatumomab treatment related to abnormal macrophage activation and ameliorated with cytokine-directed therapy. Blood, 121(26), 5154–5157.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Maschmeyer, G., De Greef, J., Mellinghoff, S. C., Nosari, A., Thiebaut-Bertrand, A., Bergeron, A., et al. (2019). Infections associated with immunotherapeutic and molecular targeted agents in hematology and oncology. A position paper by the European Conference on Infections In Leukemia (ECIL). Leukemia, 33(4), 844–862.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Duell, J., Dittrich, M., Bedke, T., Mueller, T., Eisele, F., Rosenwald, A., et al. (2017). Frequency of regulatory T cells determines the outcome of the T-cell-engaging antibody blinatumomab in patients with B-precursor ALL. Leukemia, 31(10), 2181–2190.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Ghiringhelli, F., Menard, C., Puig, P. E., Ladoire, S., Roux, S., Martin, F., Solary, E., le Cesne, A., Zitvogel, L., & Chauffert, B. (2007). Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunology, Immunotherapy, 56(5), 641–648.

    CAS  PubMed  Google Scholar 

  33. Beyer, M., Kochanek, M., Darabi, K., Popov, A., Jensen, M., Endl, E., Knolle, P. A., Thomas, R. K., von Bergwelt-Baildon, M., Debey, S., Hallek, M., & Schultze, J. L. (2005). Reduced frequencies and suppressive function of CD4+CD25hi regulatory T cells in patients with chronic lymphocytic leukemia after therapy with fludarabine. Blood, 106(6), 2018–2025.

    CAS  PubMed  Google Scholar 

  34. Piccaluga, P. P., Arpinati, M., Candoni, A., Laterza, C., Paolini, S., Gazzola, A., Sabattini, E., Visani, G., & Pileri, S. A. (2011). Surface antigens analysis reveals significant expression of candidate targets for immunotherapy in adult acute lymphoid leukemia. Leukemia & Lymphoma, 52(2), 325–327.

    Google Scholar 

  35. Tedder, T. F., Tuscano, J., Sato, S., & Kehrl, J. H. (1997). CD22, a B lymphocyte–specific adhesion molecule that regulates antigen receptor signaling. Annual Review of Immunology, 15, 481–504.

    CAS  PubMed  Google Scholar 

  36. DiJoseph, J. F., Armellino, D. C., Boghaert, E. R., Khandke, K., Dougher, M. M., Sridharan, L., et al. (2004). Antibody-targeted chemotherapy with CMC-544: a CD22-targeted immunoconjugate of calicheamicin for the treatment of B-lymphoid malignancies. Blood, 103(5), 1807–1814.

    CAS  PubMed  Google Scholar 

  37. Sievers, E. L., Larson, R. A., Stadtmauer, E. A., Estely, E., Löwenberg, B., Dombret, H., et al. (2001). Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukemia in first relapse. Journal of Clinical Oncology, 19(13), 3244–3254.

    CAS  PubMed  Google Scholar 

  38. Zein, N., Sinha, A. M., McGahren, W. J., & Ellestad, G. A. (1988). Calicheamicin gamma 1I: an antitumor antibiotic that cleaves double-stranded DNA site specifically. Science, 240(4856), 1198–1201.

    CAS  PubMed  Google Scholar 

  39. Kantarjian, H., Thomas, D., Jorgensen, J., Jabbour, E., Kebriaei, P., Rytting, M., et al. (2012). Inotuzumab ozogamicin, an anti-CD22–calecheamicin conjugate, for refractory and relapsed acute lymphocytic leukaemia: a phase 2 study. The Lancet Oncology, 13(4), 403–411.

    CAS  PubMed  Google Scholar 

  40. Kantarjian, H., Thomas, D., Jorgensen, J., Kebriaei, P., Jabbour, E., Rytting, M., York, S., Ravandi, F., Garris, R., Kwari, M., Faderl, S., Cortes, J., Champlin, R., & O’Brien, S. (2013). Results of inotuzumab ozogamicin, a CD22 monoclonal antibody, in refractory and relapsed acute lymphocytic leukemia. Cancer, 119(15), 2728–2736.

    CAS  PubMed  Google Scholar 

  41. DeAngelo, D. J., Stock, W., Stein, A. S., Shustov, A., Liedtke, M., Schiffer, C. A., et al. (2017). Inotuzumab ozogamicin in adults with relapsed or refractory CD22-positive acute lymphoblastic leukemia: a phase 1/2 study. Blood Advances, 1(15), 1167–1180.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kantarjian, H. M., DeAngelo, D. J., Stelljes, M., Martinelli, G., Liedtke, M., Stock, W., et al. (2016). Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia. New England Journal of Medicine, 375(8), 740–753.

    CAS  Google Scholar 

  43. Leslie, M. (2017). ADC approval likely to spur more research. Cancer Discovery, 7(10), 1054–1055.

    Google Scholar 

  44. Jabbour, E., Ravandi, F., Kebriaei, P., Huang, X., Short, N. J., Thomas, D., Sasaki, K., Rytting, M., Jain, N., Konopleva, M., Garcia-Manero, G., Champlin, R., Marin, D., Kadia, T., Cortes, J., Estrov, Z., Takahashi, K., Patel, Y., Khouri, M. R., Jacob, J., Garris, R., O’Brien, S., & Kantarjian, H. (2018). Salvage chemoimmunotherapy with inotuzumab ozogamicin combined with mini–hyper-CVD for patients with relapsed or refractory Philadelphia chromosome–negative acute lymphoblastic leukemia: a phase 2 clinical trial. JAMA Oncology, 4(2), 230–234.

    PubMed  Google Scholar 

  45. Bhojwani, D., Sposto, R., Shah, N. N., Rodriguez, V., Yuan, C., Stetler-Stevenson, M., O’Brien, M. M., McNeer, J., Quereshi, A., Cabannes, A., Schlegel, P., Rossig, C., Dalla-Pozza, L., August, K., Alexander, S., Bourquin, J. P., Zwaan, M., Raetz, E. A., Loh, M. L., & Rheingold, S. R. (2019). Inotuzumab ozogamicin in pediatric patients with relapsed/refractory acute lymphoblastic leukemia. Leukemia, 33(4), 884–892.

    CAS  PubMed  Google Scholar 

  46. Kantarjian, H. M., Su, Y., Jabbour, E. J., Bhattacharyya, H., Yan, E., Cappelleri, J. C., & Marks, D. I. (2018). Patient-reported outcomes from a phase 3 randomized controlled trial of inotuzumab ozogamicin versus standard therapy for relapsed/refractory acute lymphoblastic leukemia. Cancer, 124(10), 2151–2160.

    CAS  PubMed  Google Scholar 

  47. Kantarjian, H. M., DeAngelo, D. J., Advani, A. S., Stelljes, M., Kebriaei, P., Cassday, R. D., et al. (2017). Hepatic adverse event profile of inotuzumab ozogamicin in adult patients with relapsed or refractory acute lymphoblastic leukaemia: results from the open-label, randomised, phase 3 INO-VATE study. The Lancet Haematology, 4(8), e387–e398.

    PubMed  Google Scholar 

  48. Guffroy, M., Falahatpisheh, H., Biddle, K., Kreeger, J., Obert, L., Walters, K., Goldstein, R., Boucher, G., Coskran, T., Reagan, W., Sullivan, D., Huang, C., Sokolowski, S., Giovanelli, R., Gerber, H. P., Finkelstein, M., & Khan, N. (2017). Liver microvascular injury and thrombocytopenia of antibody–calicheamicin conjugates in cynomolgus monkeys—mechanism and monitoring. Clinical Cancer Research, 23(7), 1760–1770.

    CAS  PubMed  Google Scholar 

  49. Taksin, A. L., Legrand, O., Raffoux, E., de Revel, T., Thomas, X., Contentin, N., Bouabdallah, R., Pautas, C., Turlure, P., Reman, O., Gardin, C., Varet, B., de Botton, S., Pousset, F., Farhat, H., Chevret, S., Dombret, H., & Castaigne, S. (2007). High efficacy and safety profile of fractionated doses of Mylotarg as induction therapy in patients with relapsed acute myeloblastic leukemia: A prospective study of the alfa group. Leukemia, 21(1), 66–71.

    CAS  PubMed  Google Scholar 

  50. Wadleigh, M., Richardson, P. G., Zahrieh, D., Lee, S. J., Cutler, C., Ho, V., Alyea, E. P., Antin, J. H., Stone, R. M., Soiffer, R. J., & DeAngelo, D. (2003). Prior gemtuzumab ozogamicin exposure significantly increases the risk of veno-occlusive disease in patients who undergo myeloablative allogeneic stem cell transplantation. Blood, 102(5), 1578–8152.

    CAS  PubMed  Google Scholar 

  51. Jabbour, E. J., Sasaki, K., Ravandi, F., Short, N. J., Garcia-Manero, G., Daver, N., Kadia, T., Konopleva, M., Jain, N., Cortes, J., Issa, G. C., Jacob, J., Kwari, M., Thompson, P., Garris, R., Pemmaraju, N., Yilmaz, M., O’Brien, S. M., & Kantarjian, H. M. (2019). Inotuzumab ozogamicin in combination with low-intensity chemotherapy (mini-HCVD) with or without blinatumomab versus standard intensive chemotherapy (HCVAD) as frontline therapy for older patients with Philadelphia chromosome–negative acute lymphoblastic leukemia: a propensity score analysis. Cancer, 125(15), 2579–2586.

    CAS  PubMed  Google Scholar 

  52. Jabbour, E., Sasaki, K., Ravandi, F., Huang, X., Short, N. J., Khouri, M., Kebriaei, P., Burger, J., Khoury, J., Jorgensen, J., Jain, N., Konopleva, M., Garcia-Manero, G., Kadia, T., Cortes, J., Jacob, J., Montalbano, K., Garris, R., O’Brien, S., & Kantarjian, H. M. (2018). Chemoimmunotherapy with inotuzumab ozogamicin combined with mini-hyper-CVD, with or without blinatumomab, is highly effective in patients with Philadelphia chromosome–negative acute lymphoblastic leukemia in first salvage. Cancer, 124(20), 4044–4055.

    CAS  PubMed  Google Scholar 

  53. Paul, M. R., Wong, V., Aristizabal, P., & Kuo, D. J. (2019). Treatment of recurrent refractory pediatric pre-B acute lymphoblastic leukemia using inotuzumab ozogamicin monotherapy resulting in CD22 antigen expression loss as a mechanism of therapy resistance. Journal of Pediatric Hematology/Oncology, 41(8), e546–e549.

    PubMed  PubMed Central  Google Scholar 

  54. Imai, C., Mihara, K., Andreansky, M., Nicholson, I. C., Pui, C. H., Geiger, T. L., & Campana, D. (2004). Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. Leukemia, 18(4), 676–684.

    CAS  PubMed  Google Scholar 

  55. Brentjens, R. J., Santos, E., Nikhamin, Y., Yeh, R., Matsushita, M., La Perle, K., et al. (2007). Genetically targeted T cells eradicate systemic acute lymphoblastic leukemia xenografts. Clinical Cancer Research, 13(18 part 1), 5426–5435.

    CAS  PubMed  Google Scholar 

  56. Brudno, J. N., Somerville, R. P., Shi, V., Rose, J. J., Halverson, D. C., Fowler, D. H., Gea-Banacloche, J. C., Pavletic, S. Z., Hickstein, D. D., Lu, T. L., Feldman, S. A., Iwamoto, A. T., Kurlander, R., Maric, I., Goy, A., Hansen, B. G., Wilder, J. S., Blacklock-Schuver, B., Hakim, F. T., Rosenberg, S. A., Gress, R. E., & Kochenderfer, J. N. (2016). Allogeneic T cells that express an anti-CD19 chimeric antigen receptor induce remissions of B-cell malignancies that progress after allogeneic hematopoietic stem-cell transplantation without causing graft-versus-host disease. Journal of Clinical Oncology, 34(10), 1112–1121.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Grupp, S. A., Kalos, M., Barrett, D., Aplenc, R., Porter, D. L., Rheingold, S. R., et al. (2013). Chimeric antigen receptor–modified T cells for acute lymphoid leukemia. New England Journal of Medicine, 368(16), 1509–1518.

    CAS  Google Scholar 

  58. Maude, S. L., Frey, N., Shaw, P. A., Aplenc, R., Barrett, D. M., Bunin, N. J., Chew, A., Gonzalez, V. E., Zheng, Z., Lacey, S. F., Mahnke, Y. D., Melenhorst, J. J., Rheingold, S. R., Shen, A., Teachey, D. T., Levine, B. L., June, C. H., Porter, D. L., & Grupp, S. A. (2014). Chimeric antigen receptor T cells for sustained remissions in leukemia. New England Journal of Medicine, 371(16), 1507–1517.

    Google Scholar 

  59. Maude, S. L., Laetsch, T. W., Buechner, J., Rives, S., Boyer, M., Bittencourt, H., Bader, P., Verneris, M. R., Stefanski, H. E., Myers, G. D., Qayed, M., de Moerloose, B., Hiramatsu, H., Schlis, K., Davis, K. L., Martin, P. L., Nemecek, E. R., Yanik, G. A., Peters, C., Baruchel, A., Boissel, N., Mechinaud, F., Balduzzi, A., Krueger, J., June, C. H., Levine, B. L., Wood, P., Taran, T., Leung, M., Mueller, K. T., Zhang, Y., Sen, K., Lebwohl, D., Pulsipher, M. A., & Grupp, S. A. (2018). Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. New England Journal of Medicine, 378(5), 439–448.

    CAS  Google Scholar 

  60. Lee, D. W., Kochenderfer, J. N., Stetler-Stevenson, M., Cui, Y. K., Delbrook, C., Feldman, S. A., et al. (2015). T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. The Lancet, 385(9967), 517–528.

    CAS  Google Scholar 

  61. Park, J. H., Rivière, I., Gonen, M., Wang, X., Sénéchal, B., Curran, K. J., Curran, K. J., Sauter, C., Wang, Y., Santomasso, B., Mead, E., Roshal, M., Maslak, P., Davila, M., Brentjens, R. J., & Sadelain, M. (2018). Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. New England Journal of Medicine, 378(5), 449–459.

    CAS  Google Scholar 

  62. Pulsipher, M. A. (2018). Are CAR T cells better than antibody or HCT therapy in B-ALL? Hematology, American Society of Hematology Education Program, 2018(1), 16–24.

    Google Scholar 

  63. Davila, M. L., Riviere, I., Wang, X., Bartido, S., Park, J., Curran, K., et al. (2014). Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Science Translational Medicine, 6(224), 224ra2.

    Google Scholar 

  64. Summers, C., Annesley, C., Bleakley, M., Dahlberg, A., Jensen, M. C., & Gardner, R. (2018). Long term follow-up after SCRI-CAR19v1 reveals late recurrences as well as a survival advantage to consolidation with HCT after CAR T cell induced remission [abstract]. Blood, 132(supplement 1), 967.

    Google Scholar 

  65. Talekar, M. K., Maude, S. L., Hucks, G. E., Motley, L. S., Callahan, C., White, C. M., et al. (2017). Effect of chimeric antigen receptor-modified T (CAR-T) cells on responses in children with non-CNS extramedullary relapse of CD19+ acute lymphoblastic leukemia (ALL) [abstract]. Journal of Clinical Oncology, 35(15 supplement), 10507.

    Google Scholar 

  66. Chen, X., Wang, Y., Ruan, M., Li, J., Zhong, M., Li, Z., et al. (2019). Treatment of testicular relapse of B-cell acute lymphoblastic leukemia with CD19-specific chimeric antigen receptor T cells. Clinical Lymphoma, Myeloma & Leukemia. https://doi.org/10.1016/j.clml.2019.10.016.

  67. O’Leary, M. (2017). BLA Clinical Review Memorandum. https://www.fda.gov/media/107973/download. Accessed 21 Nov 2019.

  68. June, C. H., & Sadelain, M. (2018). Chimeric antigen receptor therapy. New England Journal of Medicine, 379(1), 64–73.

    CAS  Google Scholar 

  69. Teachey, D. T., Lacey, S. F., Shaw, P. A., Melenhorst, J. J., Maude, S. L., Frey, N., Pequignot, E., Gonzalez, V. E., Chen, F., Finklestein, J., Barrett, D. M., Weiss, S. L., Fitzgerald, J. C., Berg, R. A., Aplenc, R., Callahan, C., Rheingold, S. R., Zheng, Z., Rose-John, S., White, J. C., Nazimuddin, F., Wertheim, G., Levine, B. L., June, C. H., Porter, D. L., & Grupp, S. A. (2016). Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Cancer Discovery, 6(6), 664–679.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Gardner, R., Ceppi, F., Rivers, J., Annesley, C., Summers, C., Taraseviciute, A., et al. (2019). Preemptive mitigation of CD19 CAR T cell cytokine release syndrome without attenuation of anti-leukemic efficacy. Blood. https://doi.org/10.1182/blood.2019001463.

    PubMed  PubMed Central  Google Scholar 

  71. Gust, J., Hay, K. A., Hanafi, L. A., Li, D., Myerson, D., Gonzalez-Cuyar, F., et al. (2017). Endothelial activation and blood-brain barrier disruption in neurotoxicity after adoptive immunotherapy with CD19 CAR-T cells. Cancer Discovery, 7(12), 1404–1419.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Santomasso, B. D., Park, J. H., Salloum, D., Riviere, I., Flynn, J., Mead, E., Halton, E., Wang, X., Senechal, B., Purdon, T., Cross, J. R., Liu, H., Vachha, B., Chen, X., DeAngelis, L., Li, D., Bernal, Y., Gonen, M., Wendel, H. G., Sadelain, M., & Brentjens, R. J. (2018). Clinical and biological correlates of neurotoxicity associated with CAR T-cell therapy in patients with B-cell acute lymphoblastic leukemia. Cancer Discovery, 8(8), 958–971.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Lee, D. W., Santomasso, B. D., Locke, F. L., Ghobadi, A., Turtle, C. J., Brudno, J. N., Maus, M. V., Park, J. H., Mead, E., Pavletic, S., Go, W. Y., Eldjerou, L., Gardner, R. A., Frey, N., Curran, K. J., Peggs, K., Pasquini, M., DiPersio, J., van den Brink, M., Komanduri, K. V., Grupp, S. A., & Neelapu, S. S. (2019). ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells. Biology of Blood and Marrow Transplantation, 25(4), 625–638.

    CAS  PubMed  Google Scholar 

  74. Hill, J. A., Li, D., Hay, K. A., Green, M. L., Cherian, S., Chen, X., Riddell, S. R., Maloney, D. G., Boeckh, M., & Turtle, C. J. (2018). Infectious complications of CD19-targeted chimeric antigen receptor-modified T-cell immunotherapy. Blood, 131(1), 121–130.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Laetsch, T. W., Maude, S. L., Milone, M. C., Davis, K. L., Krueger, J., Cardena, A. M., et al. (2018). False-positive results with select HIV-1 NAT methods following lentivirus-based tisagenlecleucel therapy. Blood, 131(23), 2596–2598.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Bhoj, V. G., Arhontoulis, D., Wertheim, G., Capobianchi, J., Callahan, C. A., Ellebrecht, C. T., et al. (2016). Persistence of long-lived plasma cells and humoral immunity in individuals responding to CD19-directed CAR T-cell therapy. Blood, 128(3), 360–370.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Long, A. H., Haso, W. M., Shern, J. F., Wanhainen, K. M., Murgai, M., Ingaramo, M., Smith, J. P., Walker, A. J., Kohler, M. E., Venkateshwara, V. R., Kaplan, R. N., Patterson, G. H., Fry, T. J., Orentas, R. J., & Mackall, C. L. (2015). 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nature Medicine, 21(6), 581–590.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Feucht, J., Sun, J., Eyquem, J., Ho, Y. J., Zhao, Z., Leibold, J., Dobrin, A., Cabriolu, A., Hamieh, M., & Sadelain, M. (2019). Calibration of CAR activation potential directs alternative T cell fates and therapeutic potency. Nature Medicine, 25(1), 82–88.

    CAS  PubMed  Google Scholar 

  79. Maude, S. L., Teachey, D. T., Porter, D. L., & Grupp, S. A. (2015). CD19-targeted chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Blood, 125(26), 4017–4023.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Ghorashian, S., Kramer, A. M., Onuoha, S., Wright, G., Bartram, J., Richardson, R., Albon, S. J., Casanovas-Company, J., Castro, F., Popova, B., Villanueva, K., Yeung, J., Vetharoy, W., Guvenel, A., Wawrzyniecka, P. A., Mekkaoui, L., Cheung, G. W., Pinner, D., Chu, J., Lucchini, G., Silva, J., Ciocarlie, O., Lazareva, A., Inglott, S., Gilmour, K. C., Ahsan, G., Ferrari, M., Manzoor, S., Champion, K., Brooks, T., Lopes, A., Hackshaw, A., Farzaneh, F., Chiesa, R., Rao, K., Bonney, D., Samarasinghe, S., Goulden, N., Vora, A., Veys, P., Hough, R., Wynn, R., Pule, M. A., & Amrolia, P. J. (2019). Enhanced CAR T cell expansion and prolonged persistence in pediatric patients with ALL treated with a low-affinity CD19 CAR. Nature Medicine, 25(9), 1408–1414.

    CAS  PubMed  Google Scholar 

  81. Gardner, R. A., Finney, O., Annesley, C., Brakke, H., Summers, C., Leger, K., Bleakley, M., Brown, C., Mgebroff, S., Kelly-Spratt, K. S., Hoglund, V., Lindgren, C., Oron, A. P., Li, D., Riddell, S. R., Park, J. R., & Jensen, M. C. (2017). Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults. Blood, 129(25), 3322–3331.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Maude, S. L., Barrett, D. M., Rheingold, S. R., Aplenc, R., Teachey, D. T., Callahan, C., et al. (2016). Efficacy of humanized CD19-targeted chimeric antigen receptor (CAR)-modified T cells in children and young adults with relapsed/refractory acute lymphoblastic leukemia [abstract]. Blood, 128, 217.

    Google Scholar 

  83. Rossig, C., Pule, M., Altvater, B., Saiagh, S., Wright, G., Ghorashian, S., Clifton-Hadley, L., Champion, K., Sattar, Z., Popova, B., Hackshaw, A., Smith, P., Roberts, T., Biagi, E., Dreno, B., Rousseau, R., Kailayangiri, S., Ahlmann, M., Hough, R., Kremens, B., Sauer, M. G., Veys, P., Goulden, N., Cummins, M., & Amrolia, P. J. (2017). Vaccination to improve the persistence of CD19CAR gene-modified T cells in relapsed pediatric acute lymphoblastic leukemia. Leukemia, 31(5), 1087–1095.

    CAS  PubMed  Google Scholar 

  84. Singh, N., Perazzelli, J., Grupp, S. A., & Barrett, D. M. (2016). Early memory phenotypes drive T cell proliferation in patients with pediatric malignancies. Science Translational Medicine, 8(320), 320ra3.

    PubMed  Google Scholar 

  85. Sabatino, M., Hu, J., Sommariva, M., Gautam, S., Fellowes, V., Hocker, J. D., Dougherty, S., Qin, H., Klebanoff, C. A., Fry, T. J., Gress, R. E., Kochenderfer, J. N., Stroncek, D. F., Ji, Y., & Gattinoni, L. (2016). Generation of clinical-grade CD19-specific CAR-modified CD8+ memory stem cells for the treatment of human B-cell malignancies. Blood, 128(4), 519–528.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Orlando, E. J., Han, X., Tribouley, C., Wood, P. A., Leary, R. J., Riester, M., Levine, J. E., Qayed, M., Grupp, S. A., Boyer, M., de Moerloose, B., Nemecek, E. R., Bittencourt, H., Hiramatsu, H., Buechner, J., Davies, S. M., Verneris, M. R., Nguyen, K., Brogdon, J. L., Bitter, H., Morrissey, M., Pierog, P., Pantano, S., Engelman, J. A., & Winckler, W. (2018). Genetic mechanisms of target antigen loss in CAR19 therapy of acute lymphoblastic leukemia. Nature Medicine, 24(10), 1504–1506.

    CAS  PubMed  Google Scholar 

  87. Sotillo, E., Barrett, D. M., Black, K. L., Bagashev, A., Oldridge, D., Wu, G., Sussman, R., Lanauze, C., Ruella, M., Gazzara, M. R., Martinez, N. M., Harrington, C. T., Chung, E. Y., Perazzelli, J., Hofmann, T. J., Maude, S. L., Raman, P., Barrera, A., Gill, S., Lacey, S. F., Melenhorst, J. J., Allman, D., Jacoby, E., Fry, T., Mackall, C., Barash, Y., Lynch, K. W., Maris, J. M., Grupp, S. A., & Thomas-Tikhonenko, A. (2015). Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discovery, 5(12), 1282–1295.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Jacoby, E., Nguyen, S. M., Fountaine, T. J., Welp, K., Gryder, B., Qin, H., et al. (2016). CD19 CAR immune pressure induces B-precursor acute lymphoblastic leukaemia lineage switch exposing inherent leukaemic plasticity. Nature Communications, 7, 12320.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Gardner, R., Wu, D., Cherian, S., Fang, M., Hanafi, L. A., Finney, O., Smithers, H., Jensen, M. C., Riddell, S. R., Maloney, D. G., & Turtle, C. J. (2016). Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy. Blood, 127(20), 2406–2410.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Oberley, M. J., Gaynon, P. S., Bhojwani, D., Pulsipher, M. A., Gardner, R. A., Hiemenz, M. C., Ji, J., Han, J., O’Gorman, M. R. G., Wayne, A. S., & Raca, G. (2018). Myeloid lineage switch following chimeric antigen receptor T-cell therapy in a patient with TCF3-ZNF384 fusion-positive B-lymphoblastic leukemia. Pediatric Blood & Cancer, 65(9), e27265.

    Google Scholar 

  91. Nagel, I., Bartels, M., Duell, J., Oberg, H. H., Ussat, S., Bruckmueller, H., Ottmann, O., Pfeifer, H., Trautmann, H., Gökbuget, N., Caliebe, A., Kabelitz, D., Kneba, M., Horst, H. A., Hoelzer, D., Topp, M. S., Cascorbi, I., Siebert, R., & Brüggemann, M. (2017). Hematopoietic stem cell involvement in BCR-ABL1–positive ALL as a potential mechanism of resistance to blinatumomab therapy. Blood, 130(18), 2027–2031.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Rayes, A., McMasters, R. L., & O’Brien, M. M. (2016). Lineage switch in MLL-rearranged infant leukemia following CD19-directed therapy. Pediatric Blood & Cancer, 63(6), 1113–1115.

    CAS  Google Scholar 

  93. Balducci, E., Nivaggioni, V., Boudjarane, J., Bouriche, L., Rahal, I., Bernot, D., Alazard, E., Duployez, N., Grardel, N., Arnoux, I., Lafage-Pochitaloff, M., Michel, G., Nadel, B., & Loosveld, M. (2017). Lineage switch from B acute lymphoblastic leukemia to acute monocytic leukemia with persistent t(4;11)(q21;q23) and cytogenetic evolution under CD19-targeted therapy. Annals of Hematology, 96(9), 1579–1581.

    PubMed  Google Scholar 

  94. Cohen, A., Petsche, D., Grunberger, T., & Freedman, M. H. (1992). Interleukin 6 induces myeloid differentiation of a human biphenotypic leukemic cell line. Leukemia Research, 16(8), 751–760.

    CAS  PubMed  Google Scholar 

  95. Alexander, T. B., Gu, Z., Iacobucci, I., Dickerson, K., Choi, J. K., Xu, B., Payne-Turner, D., Yoshihara, H., Loh, M. L., Horan, J., Buldini, B., Basso, G., Elitzur, S., de Haas, V., Zwaan, C. M., Yeoh, A., Reinhardt, D., Tomizawa, D., Kiyokawa, N., Lammens, T., de Moerloose, B., Catchpoole, D., Hori, H., Moorman, A., Moore, A. S., Hrusak, O., Meshinchi, S., Orgel, E., Devidas, M., Borowitz, M., Wood, B., Heerema, N. A., Carrol, A., Yang, Y. L., Smith, M. A., Davidsen, T. M., Hermida, L. C., Gesuwan, P., Marra, M. A., Ma, Y., Mungall, A. J., Moore, R. A., Jones, S. J. M., Valentine, M., Janke, L. J., Rubnitz, J. E., Pui, C. H., Ding, L., Liu, Y., Zhang, J., Nichols, K. E., Downing, J. R., Cao, X., Shi, L., Pounds, S., Newman, S., Pei, D., Guidry Auvil, J. M., Gerhard, D. S., Hunger, S. P., Inaba, H., & Mullighan, C. G. (2018). The genetic basis and cell of origin of mixed phenotype acute leukaemia. Nature, 562(7727), 373–379.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Hamieh, M., Dobrin, A., Cabriolu, A., van der Stegen, S. J. C., Giavridis, T., Mansilla-Soto, J., et al. (2019). CAR T cell trogocytosis and cooperative killing regulate tumour antigen escape. Nature, 568(7750), 112–116.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Ruella, M., Xu, J., Barrett, D. M., Fraietta, J. A., Reich, T. J., Ambrose, D. E., Klichinsky, M., Shestova, O., Patel, P. R., Kulikovskaya, I., Nazimuddin, F., Bhoj, V. G., Orlando, E. J., Fry, T. J., Bitter, H., Maude, S. L., Levine, B. L., Nobles, C. L., Bushman, F. D., Young, R. M., Scholler, J., Gill, S. I., June, C. H., Grupp, S. A., Lacey, S. F., & Melenhorst, J. J. (2018). Induction of resistance to chimeric antigen receptor T cell therapy by transduction of a single leukemic B cell. Nature Medicine, 24(10), 1499–1503.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Braig, F., Brandt, A., Goebeler, M., Tony, H. P., Kurze, A. K., Nollau, P., Bumm, T., Böttcher, S., Bargou, R. C., & Binder, M. (2017). Resistance to anti-CD19/CD3 BiTE in acute lymphoblastic leukemia may be mediated by disrupted CD19 membrane trafficking. Blood, 129(1), 100–104.

    CAS  PubMed  Google Scholar 

  99. Haso, W., Lee, D. W., Shah, N. N., Stetler-Stevenson, M., Yuan, C. M., Pastan, I. H., Dimitrov, D. S., Morgan, R. A., FitzGerald, D., Barrett, D. M., Wayne, A. S., Mackall, C. L., & Orentas, R. J. (2013). Anti-CD22–chimeric antigen receptors targeting B-cell precursor acute lymphoblastic leukemia. Blood, 121(7), 1165–1174.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Qin, H., Cho, M., Haso, W., Zhang, L., Tasian, S. K., Oo, H. Z., Negri, G. L., Lin, Y., Zou, J., Mallon, B. S., Maude, S., Teachey, D. T., Barrett, D. M., Orentas, R. J., Daugaard, M., Sorensen, P. H., Grupp, S. A., & Fry, T. J. (2015). Eradication of B-ALL using chimeric antigen receptor-expressing T cells targeting the TSLPR oncoprotein. Blood, 126(5), 629–639.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Fry, T. J., Shah, N. N., Orentas, R. J., Stetler-Stevenson, M., Yuan, C. M., Ramakrishna, S., Wolters, P., Martin, S., Delbrook, C., Yates, B., Shalabi, H., Fountaine, T. J., Shern, J. F., Majzner, R. G., Stroncek, D. F., Sabatino, M., Feng, Y., Dimitrov, D. S., Zhang, L., Nguyen, S., Qin, H., Dropulic, B., Lee, D. W., & Mackall, C. L. (2018). CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nature Medicine, 24(1), 20–28.

    CAS  PubMed  Google Scholar 

  102. Ramakrishna, S., Highfill, S. L., Walsh, Z., Nguyen, S. M., Lei, H., Shern, J. F., Qin, H., Kraft, I. L., Stetler-Stevenson, M., Yuan, C. M., Hwang, J. D., Feng, Y., Zhu, Z., Dimitrov, D., Shah, N. N., & Fry, T. J. (2019). Modulation of target antigen density improves CAR T-cell functionality and persistence. Clinical Cancer Research, 25(17), 5329–5341.

    PubMed  PubMed Central  Google Scholar 

  103. Wang, N., Hu, X., Cao, W., Li, C., Xiao, Y., Cao, Y., et al. (2019). Efficacy and safety of CAR19/22 T-cell “cocktail” therapy in patients with refractory/ relapsed B-cell malignancies. Blood. https://doi.org/10.1182/blood.2019000017.

    PubMed  Google Scholar 

  104. Schneider, D., Xiong, Y., Wu, D., Nölle, V., Schmitz, S., Haso, W., et al. (2017). A tandem CD19/CD20 CAR lentiviral vector drives on-target and off-target antigen modulation in leukemia cell lines. Journal for Immunotherapy of Cancer, 5, 42.

    PubMed  PubMed Central  Google Scholar 

  105. Ruella, M., Barrett, D. M., Kenderian, S. S., Shestova, O., Hofmann, T. J., Perazelli, J., et al. (2016). Dual CD19 and CD123 targeting prevents antigen-loss relapses after CD19-directed immunotherapies. The Journal of Clinical Investigation, 126(10), 3814–3826.

    PubMed  PubMed Central  Google Scholar 

  106. Flowers, C. R., & Ramsey, S. D. (2018). What can cost-effectiveness analysis tell us about chimeric antigen receptor T-cell therapy for relapsed acute lymphoblastic leukemia? Journal of Clinical Oncology, 36(32), 3183–3185.

    Google Scholar 

  107. Lin, J. K., Lerman, B. J., Barnes, J. I., Boursiquot, B. C., Tan, Y. J., Robinson, A. Q. L., et al. (2018). Cost effectiveness of chimeric antigen receptor T-cell therapy in relapsed or refractory pediatric B-cell acute lymphoblastic leukemia. Journal of Clinical Oncology, 36(32), 3192–3202.

    CAS  PubMed  Google Scholar 

  108. Whittington, M. D., McQueen, R. B., Ollendorf, D. A., Kumar, V. M., Chapman, R. H., Tice, J. A., et al. (2018). Long-term survival and value of chimeric antigen receptor T-cell therapy for pediatric patients with relapsed or refractory leukemia. JAMA Pediatrics, 172(12), 1161–1168.

    PubMed  PubMed Central  Google Scholar 

  109. Sarkar, R. R., Gloude, N. J., Schiff, D., & Murphy, J. D. (2019). Cost-effectiveness of chimeric antigen receptor T-cell therapy in pediatric relapsed/refractory B-cell acute lymphoblastic leukemia. Journal of the National Cancer Institute, 111(7), 719–726.

    PubMed  Google Scholar 

  110. Laetsch, T. W., Myers, G. D., Baruchel, A., Dietz, A. C., Pulsipher, M. A., Bittencourt, H., et al. (2019). Patient-reported quality of life after tisagenlecleucel infusion in children and young adults with relapsed or refractory B-cell acute lymphoblastic leukaemia: a global, single-arm, phase 2 trial. The Lancet Oncology. https://doi.org/10.1016/S1470-2045(19)30493-0.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Mamonkin, M., Rouce, R. H., Tashiro, H., & Brenner, M. K. (2015). A T-cell–directed chimeric antigen receptor for the selective treatment of T-cell malignancies. Blood, 126(8), 983–992.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Sánchez-Martínez, D., Baroni, M. L., Gutierrez-Agüera, F., Roca-Ho, H., Blanch-Lombarte, O., González-García, S., Torrebadell, M., Junca, J., Ramírez-Orellana, M., Velasco-Hernández, T., Bueno, C., Fuster, J. L., Prado, J. G., Calvo, J., Uzan, B., Cools, J., Camos, M., Pflumio, F., Toribio, M. L., & Menéndez, P. (2019). Fratricide-resistant CD1a-specific CAR T cells for the treatment of cortical T-cell acute lymphoblastic leukemia. Blood, 133(21), 2291–2304.

    PubMed  PubMed Central  Google Scholar 

  113. Gomes-Silva, D., Srinivasan, M., Sharma, S., Lee, C. M., Wagner, D. L., Davis, T. H., Rouce, R. H., Bao, G., Brenner, M. K., & Mamonkin, M. (2017). CD7-edited T cells expressing a CD7-specific CAR for the therapy of T-cell malignancies. Blood, 130(3), 285–296.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Png, Y. T., Vinanica, N., Kamiya, T., Shimasaki, N., Coustan-Smith, E., & Campana, D. (2017). Blockade of CD7 expression in T cells for effective chimeric antigen receptor targeting of T-cell malignancies. Blood Advances, 1(25), 2348–2360.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Qasim, W., Zhan, H., Samarasinghe, S., Adams, S., Amrolia, P., Stafford, S., et al. (2017). Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells. Science Translational Medicine, 9(374), eaaj2013.

    PubMed  Google Scholar 

  116. Kantarjian, H., Ravandi, F., Short, N. J., Huang, X., Jain, N., Sasaki, K., Daver, N., Pemmaraju, N., Khoury, J. D., Jorgensen, J., Alvarado, Y., Konopleva, M., Garcia-Manero, G., Kadia, T., Yilmaz, M., Bortakhur, G., Burger, J., Kornblau, S., Wierda, W., DiNardo, C., Ferrajoli, A., Jacob, J., Garris, R., O’Brien, S., & Jabbour, E. (2018). Inotuzumab ozogamicin in combination with low-intensity chemotherapy for older patients with Philadelphia chromosome–negative acute lymphoblastic leukaemia: a single-arm, phase 2 study. The Lancet Oncology, 19(2), 240–248.

    CAS  PubMed  Google Scholar 

  117. Chiaretti, S., Bassan, R., Vitale, A., Elia, L., Piciocchi, A., Ferrara, F., et al. (2019). A dasatinib-blinatumomab combination for the front-line treatment of adult Ph+ ALL patients. Preliminary results of the GIMEMA LAL2116 D-ALBA trial; on behalf of Gimema Acute Leukemia Working Party. HemaSphere, 3, 746.

    Google Scholar 

Download references

Acknowledgments

The authors thank Keith A. Laycock, PhD, ELS, for scientific editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroto Inaba.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported in part by Cancer Center Core Grant CA21765 from the National Institutes of Health and by the American Lebanese Syrian Associated Charities (ALSAC).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inaba, H., Pui, CH. Immunotherapy in pediatric acute lymphoblastic leukemia. Cancer Metastasis Rev 38, 595–610 (2019). https://doi.org/10.1007/s10555-019-09834-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-019-09834-0

Keywords

Navigation