Skip to main content

Advertisement

Log in

RNA interference-based therapy and its delivery systems

Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

RNA interference (RNAi) is considered a highly specific approach for gene silencing and holds tremendous potential for treatment of various pathologic conditions such as cardiovascular diseases, viral infections, and cancer. Although gene silencing approaches such as RNAi are widely used in preclinical models, the clinical application of RNAi is challenging primarily because of the difficulty in achieving successful systemic delivery. Effective delivery systems are essential to enable the full therapeutic potential of RNAi. An ideal nanocarrier not only addresses the challenges of delivering naked siRNA/miRNA, including its chemically unstable features, extracellular and intracellular barriers, and innate immune stimulation, but also offers “smart” targeted delivery. Over the past decade, great efforts have been undertaken to develop RNAi delivery systems that overcome these obstacles. This review presents an update on current progress in the therapeutic application of RNAi with a focus on cancer therapy and strategies for optimizing delivery systems, such as lipid-based nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., & Mello, C. C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391(6669), 806–811. https://doi.org/10.1038/35888.

    Article  CAS  PubMed  Google Scholar 

  2. Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., & Tuschl, T. (2001). Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 411(6836), 494–498. https://doi.org/10.1038/35078107.

    Article  CAS  PubMed  Google Scholar 

  3. Davis, M. E., Zuckerman, J. E., Choi, C. H., Seligson, D., Tolcher, A., Alabi, C. A., et al. (2010). Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature, 464(7291), 1067–1070. https://doi.org/10.1038/nature08956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tatiparti, K., Sau, S., Kashaw, S. K., & Iyer, A. K. (2017). siRNA delivery strategies: a comprehensive review of recent developments. Nanomaterials (Basel), 7(4). https://doi.org/10.3390/nano7040077.

  5. Costa, F. F. (2007). Non-coding RNAs: lost in translation? Gene, 386(1–2), 1–10. https://doi.org/10.1016/j.gene.2006.09.028.

    CAS  PubMed  Google Scholar 

  6. Mansoori, B., Sandoghchian Shotorbani, S., & Baradaran, B. (2014). RNA interference and its role in cancer therapy. Advanced Pharmaceutical Bulletin, 4(4), 313–321. https://doi.org/10.5681/apb.2014.046.

    PubMed  PubMed Central  Google Scholar 

  7. Cao, J. (2014). The functional role of long non-coding RNAs and epigenetics. Biological Procedures Online, 16, 11. https://doi.org/10.1186/1480-9222-16-11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2), 281–297.

    Article  CAS  PubMed  Google Scholar 

  9. Rao, D. D., Vorhies, J. S., Senzer, N., & Nemunaitis, J. (2009). siRNA vs. shRNA: similarities and differences. Advanced Drug Delivery Reviews, 61(9), 746–759. https://doi.org/10.1016/j.addr.2009.04.004.

    Article  CAS  PubMed  Google Scholar 

  10. Macfarlane, L. A., & Murphy, P. R. (2010). MicroRNA: biogenesis, function and role in cancer. Current Genomics, 11(7), 537–561. https://doi.org/10.2174/138920210793175895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Smith, I., Procter, M., Gelber, R. D., Guillaume, S., Feyereislova, A., Dowsett, M., et al. (2007). 2-year follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer: a randomised controlled trial. Lancet, 369(9555), 29–36. https://doi.org/10.1016/S0140-6736(07)60028-2.

    Article  CAS  PubMed  Google Scholar 

  12. Druker, B. J., Guilhot, F., O'Brien, S. G., Gathmann, I., Kantarjian, H., Gattermann, N., et al. (2006). Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. The New England Journal of Medicine, 355(23), 2408–2417. https://doi.org/10.1056/NEJMoa062867.

    Article  CAS  PubMed  Google Scholar 

  13. Weiss, W. A., Taylor, S. S., & Shokat, K. M. (2007). Recognizing and exploiting differences between RNAi and small-molecule inhibitors. Nature Chemical Biology, 3(12), 739–744. https://doi.org/10.1038/nchembio1207-739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Eggert, U. S., Field, C. M., & Mitchison, T. J. (2006). Small molecules in an RNAi world. Molecular BioSystems, 2(2), 93–96. https://doi.org/10.1039/b515335b.

    Article  CAS  PubMed  Google Scholar 

  15. Arkin, M. R., Tang, Y., & Wells, J. A. (2014). Small-molecule inhibitors of protein-protein interactions: progressing toward the reality. Chemistry & Biology, 21(9), 1102–1114. https://doi.org/10.1016/j.chembiol.2014.09.001.

    Article  CAS  Google Scholar 

  16. Rupaimoole, R., Calin, G. A., Lopez-Berestein, G., & Sood, A. K. (2016). miRNA deregulation in cancer cells and the tumor microenvironment. Cancer Discovery, 6(3), 235–246. https://doi.org/10.1158/2159-8290.CD-15-0893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Esteller, M. (2011). Non-coding RNAs in human disease. Nature Reviews. Genetics, 12(12), 861–874. https://doi.org/10.1038/nrg3074.

    Article  CAS  PubMed  Google Scholar 

  18. Kozak, K. (2013). Annotation and specificity of existing genome-wide small interfering RNA libraries. Nucleic Acid Therapeutics, 23(1), 71–80. https://doi.org/10.1089/nat.2012.0387.

    Article  CAS  PubMed  Google Scholar 

  19. Mohr, S. E., & Perrimon, N. (2012). RNAi screening: new approaches, understandings, and organisms. Wiley Interdisciplinary Reviews RNA, 3(2), 145–158. https://doi.org/10.1002/wrna.110.

    Article  CAS  PubMed  Google Scholar 

  20. Rupaimoole, R., Han, H. D., Lopez-Berestein, G., & Sood, A. K. (2011). MicroRNA therapeutics: principles, expectations, and challenges. Chinese Journal of Cancer, 30(6), 368–370.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Xie, W., Zhao, M., Zhou, W., Guo, L., Huang, L., Yu, W., et al. (2013). Targeting of integrin-linked kinase with small interfering RNA inhibits VEGF-induced angiogenesis in retinal endothelial cells. Ophthalmic Research, 49(3), 139–149. https://doi.org/10.1159/000345070.

    Article  CAS  PubMed  Google Scholar 

  22. Cao, Y., E, G., Wang, E., Pal, K., Dutta, S. K., Bar-Sagi, D., et al. (2012). VEGF exerts an angiogenesis-independent function in cancer cells to promote their malignant progression. Cancer Research, 72(16), 3912–3918. https://doi.org/10.1158/0008-5472.CAN-11-4058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xi, H. Q., Zhang, K. C., Li, J. Y., Cui, J. X., Gao, Y. H., Wei, B., et al. (2017). RNAi-mediated inhibition of Lgr5 leads to decreased angiogenesis in gastric cancer. Oncotarget, 8(19), 31581–31591. https://doi.org/10.18632/oncotarget.15770.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhang, X. D., Wu, Q., & Yang, S. H. (2017). Effects of siRNA-mediated HIF-1alpha gene silencing on angiogenesis in osteosarcoma. Pakistan Journal of Medical Sciences, 33(2), 341–346. https://doi.org/10.12669/pjms.332.12587.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kim, M. G., Jo, S. D., Yhee, J. Y., Lee, B. S., Lee, S. J., Park, S. G., et al. (2017). Synergistic anti-tumor effects of bevacizumab and tumor targeted polymerized VEGF siRNA nanoparticles. Biochemical and Biophysical Research Communications, 489(1), 35–41. https://doi.org/10.1016/j.bbrc.2017.05.103.

  26. Palazzo, A. F., & Lee, E. S. (2015). Non-coding RNA: what is functional and what is junk? Frontiers in Genetics, 6, 2. https://doi.org/10.3389/fgene.2015.00002.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Qu, K., Zhang, X., Lin, T., Liu, T., Wang, Z., Liu, S., et al. (2017). Circulating miRNA-21-5p as a diagnostic biomarker for pancreatic cancer: evidence from comprehensive miRNA expression profiling analysis and clinical validation. Scientific Reports, 7(1), 1692. https://doi.org/10.1038/s41598-017-01904-z.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Homami, A., & Ghazi, F. (2016). MicroRNAs as biomarkers associated with bladder cancer. Medical Journal of the Islamic Republic of Iran, 30, 475.

    PubMed  PubMed Central  Google Scholar 

  29. Wang, L., Zheng, J., Sun, C., Wang, L., Jin, G., Xin, L., et al. (2017). MicroRNA expression levels as diagnostic biomarkers for intraductal papillary mucinous neoplasm. Oncotarget, 8(35), 58765–58770. https://doi.org/10.18632/oncotarget.17679.

  30. Yao, Y., Hu, J., Shen, Z., Yao, R., Liu, S., Li, Y., et al. (2015). MiR-200b expression in breast cancer: a prognostic marker and act on cell proliferation and apoptosis by targeting Sp1. Journal of Cellular and Molecular Medicine, 19(4), 760–769. https://doi.org/10.1111/jcmm.12432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lu, Y. B., Hu, J. J., Sun, W. J., Duan, X. H., & Chen, X. (2015). Prognostic value of miR-141 downregulation in gastric cancer. Genetics and Molecular Research, 14(4), 17305–17311. https://doi.org/10.4238/2015.December.16.31.

    Article  CAS  PubMed  Google Scholar 

  32. Torres, A., Torres, K., Pesci, A., Ceccaroni, M., Paszkowski, T., Cassandrini, P., et al. (2013). Diagnostic and prognostic significance of miRNA signatures in tissues and plasma of endometrioid endometrial carcinoma patients. International Journal of Cancer, 132(7), 1633–1645. https://doi.org/10.1002/ijc.27840.

    Article  CAS  PubMed  Google Scholar 

  33. Zhu, Z. M., Xu, Y. F., Su, Q. J., Du, J. D., Tan, X. L., Tu, Y. L., et al. (2014). Prognostic significance of microRNA-141 expression and its tumor suppressor function in human pancreatic ductal adenocarcinoma. Molecular and Cellular Biochemistry, 388(1–2), 39–49. https://doi.org/10.1007/s11010-013-1897-y.

    Article  CAS  PubMed  Google Scholar 

  34. Winther, M., Knudsen, S., Dahlgaard, J., Jensen, T., Hansen, A., Jensen, P. B., et al. (2016). Clinical impact of a novel microRNA chemo-sensitivity predictor in gastrooesophageal cancer. PLoS One, 11(2), e0148070. https://doi.org/10.1371/journal.pone.0148070.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Simmer, F., Venderbosch, S., Dijkstra, J. R., Vink-Borger, E. M., Faber, C., Mekenkamp, L. J., et al. (2015). MicroRNA-143 is a putative predictive factor for the response to fluoropyrimidine-based chemotherapy in patients with metastatic colorectal cancer. Oncotarget, 6(26), 22996–23007. https://doi.org/10.18632/oncotarget.4035.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rupaimoole, R., & Slack, F. J. (2017). MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nature Reviews. Drug Discovery, 16(3), 203–222. https://doi.org/10.1038/nrd.2016.246.

    Article  CAS  PubMed  Google Scholar 

  37. Guan, H., Zhao, P., Dai, Z., Liu, X., & Wang, X. (2016). SH3GL1 inhibition reverses multidrug resistance in colorectal cancer cells by downregulation of MDR1/P-glycoprotein via EGFR/ERK/AP-1 pathway. Tumour Biology, 37(9), 12153–12160. https://doi.org/10.1007/s13277-016-5092-0.

    Article  CAS  PubMed  Google Scholar 

  38. Martucci, N. M., Migliaccio, N., Ruggiero, I., Albano, F., Cali, G., Romano, S., et al. (2016). Nanoparticle-based strategy for personalized B-cell lymphoma therapy. International Journal of Nanomedicine, 11, 6089–6101. https://doi.org/10.2147/IJN.S118661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu, Y., Fei, T., Zheng, X., Brown, M., Zhang, P., Liu, X. S., et al. (2016). An integrative pharmacogenomic approach identifies two-drug combination therapies for personalized cancer medicine. Scientific Reports, 6, 22120. https://doi.org/10.1038/srep22120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Prussia, A., Thepchatri, P., Snyder, J. P., & Plemper, R. K. (2011). Systematic approaches towards the development of host-directed antiviral therapeutics. International Journal of Molecular Sciences, 12(6), 4027–4052. https://doi.org/10.3390/ijms12064027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Voinnet, O. (2005). Induction and suppression of RNA silencing: insights from viral infections. Nature Reviews. Genetics, 6(3), 206–220. https://doi.org/10.1038/nrg1555.

    Article  CAS  PubMed  Google Scholar 

  42. Blake, S. J., Bokhari, F. F., & McMillan, N. A. (2012). RNA interference for viral infections. Current Drug Targets, 13(11), 1411–1420.

    Article  CAS  PubMed  Google Scholar 

  43. Choi, J. G., Bharaj, P., Abraham, S., Ma, H., Yi, G., Ye, C., et al. (2015). Multiplexing seven miRNA-based shRNAs to suppress HIV replication. Molecular Therapy, 23(2), 310–320. https://doi.org/10.1038/mt.2014.205.

    Article  CAS  PubMed  Google Scholar 

  44. Nathans, R., Chu, C. Y., Serquina, A. K., Lu, C. C., Cao, H., & Rana, T. M. (2009). Cellular microRNA and P bodies modulate host-HIV-1 interactions. Molecular Cell, 34(6), 696–709. https://doi.org/10.1016/j.molcel.2009.06.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tchurikov, N. A., Fedoseeva, D. M., Gashnikova, N. M., Sosin, D. V., Gorbacheva, M. A., Alembekov, I. R., et al. (2016). Conserved sequences in the current strains of HIV-1 subtype A in Russia are effectively targeted by artificial RNAi in vitro. Gene, 583(1), 78–83. https://doi.org/10.1016/j.gene.2016.03.001.

    Article  CAS  PubMed  Google Scholar 

  46. Kravatsky, Y. V., Chechetkin, V. R., Fedoseeva, D. M., Gorbacheva, M. A., Kretova, O. V., & Tchurikov, N. A. (2016). Mutation frequencies in HIV-1 subtype-A genome in regions containing efficient RNAi targets. Molekuliarnaia Biologiia (Mosk), 50(3), 480–485. https://doi.org/10.7868/S0026898416020117.

    CAS  Google Scholar 

  47. Cornu, T. I., Mussolino, C., Bloom, K., & Cathomen, T. (2015). Editing CCR5: a novel approach to HIV gene therapy. Advances in Experimental Medicine and Biology, 848, 117–130. https://doi.org/10.1007/978-1-4939-2432-5_6.

    Article  CAS  PubMed  Google Scholar 

  48. Zhang, W., Yang, H., Kong, X., Mohapatra, S., San Juan-Vergara, H., Hellermann, G., et al. (2005). Inhibition of respiratory syncytial virus infection with intranasal siRNA nanoparticles targeting the viral NS1 gene. Nature Medicine, 11(1), 56–62. https://doi.org/10.1038/nm1174.

    Article  CAS  PubMed  Google Scholar 

  49. DeVincenzo, J., Cehelsky, J. E., Alvarez, R., Elbashir, S., Harborth, J., Toudjarska, I., et al. (2008). Evaluation of the safety, tolerability and pharmacokinetics of ALN-RSV01, a novel RNAi antiviral therapeutic directed against respiratory syncytial virus (RSV). Antiviral Research, 77(3), 225–231. https://doi.org/10.1016/j.antiviral.2007.11.009.

    Article  CAS  PubMed  Google Scholar 

  50. Ballarin-Gonzalez, B., Thomsen, T. B., & Howard, K. A. (2013). Clinical translation of RNAi-based treatments for respiratory diseases. Drug Delivery and Translational Research, 3(1), 84–99. https://doi.org/10.1007/s13346-012-0098-7.

    Article  CAS  PubMed  Google Scholar 

  51. Barik, S., & Lu, P. (2015). Therapy of respiratory viral infections with intranasal siRNAs. Methods in Molecular Biology, 1218, 251–262. https://doi.org/10.1007/978-1-4939-1538-5_14.

    Article  CAS  PubMed  Google Scholar 

  52. Malekshahi, S. S., Salimi, V., Arefian, E., Fatemi-Nasab, G., Adjaminejad-Fard, S., Yavarian, J., et al. (2016). Inhibition of respiratory syncytial virus replication by simultaneous targeting of mRNA and genomic RNA using dual-targeting siRNAs. Molecular Biotechnology, 58(11), 767–775. https://doi.org/10.1007/s12033-016-9976-4.

    Article  CAS  PubMed  Google Scholar 

  53. Gane, E. J. (2017). Future anti-HBV strategies. Liver International, 37(Suppl 1), 40–44. https://doi.org/10.1111/liv.13304.

    Article  CAS  PubMed  Google Scholar 

  54. Ebert, G., Poeck, H., Lucifora, J., Baschuk, N., Esser, K., Esposito, I., et al. (2011). 5′ Triphosphorylated small interfering RNAs control replication of hepatitis B virus and induce an interferon response in human liver cells and mice. Gastroenterology, 141(2), 696–706, 706 e691–693. https://doi.org/10.1053/j.gastro.2011.05.001.

    Article  CAS  PubMed  Google Scholar 

  55. Yamamoto, N., Sato, Y., Munakata, T., Kakuni, M., Tateno, C., Sanada, T., et al. (2016). Novel pH-sensitive multifunctional envelope-type nanodevice for siRNA-based treatments for chronic HBV infection. Journal of Hepatology, 64(3), 547–555. https://doi.org/10.1016/j.jhep.2015.10.014.

    Article  CAS  PubMed  Google Scholar 

  56. Lee, C. H., Kim, J. H., & Lee, S. W. (2016). The role of microRNA in pathogenesis and as markers of HCV chronic infection. Current Drug Targets, 18(7), 756–765. https://doi.org/10.2174/1389450117666160401125213.

  57. Zekri, A. N., Youssef, A. S., El-Desouky, E. D., Ahmed, O. S., Lotfy, M. M., Nassar, A. A., et al. (2016). Serum microRNA panels as potential biomarkers for early detection of hepatocellular carcinoma on top of HCV infection. Tumour Biology, 37(9), 12273–12286. https://doi.org/10.1007/s13277-016-5097-8.

    Article  CAS  PubMed  Google Scholar 

  58. Shaker, O. G., & Senousy, M. A. (2017). Serum microRNAs as predictors for liver fibrosis staging in hepatitis C virus-associated chronic liver disease patients. Journal of Viral Hepatitis, 24(8), 636–644. https://doi.org/10.1111/jvh.12696.

  59. Jiao, X., Fan, Z., Chen, H., He, P., Li, Y., Zhang, Q., et al. (2017). Serum and exosomal miR-122 and miR-199a as a biomarker to predict therapeutic efficacy of hepatitis C patients. Journal of Medical Virology, 89(9),1597–1605. https://doi.org/10.1002/jmv.24829.

  60. Luna, J. M., Scheel, T. K., Danino, T., Shaw, K. S., Mele, A., Fak, J. J., et al. (2015). Hepatitis C virus RNA functionally sequesters miR-122. Cell, 160(6), 1099–1110. https://doi.org/10.1016/j.cell.2015.02.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Janssen, H. L., Reesink, H. W., Lawitz, E. J., Zeuzem, S., Rodriguez-Torres, M., Patel, K., et al. (2013). Treatment of HCV infection by targeting microRNA. The New England Journal of Medicine, 368(18), 1685–1694. https://doi.org/10.1056/NEJMoa1209026.

    Article  CAS  PubMed  Google Scholar 

  62. Hoelscher, S. C., Doppler, S. A., Dressen, M., Lahm, H., Lange, R., & Krane, M. (2017). MicroRNAs: pleiotropic players in congenital heart disease and regeneration. Journal of Thoracic Disease, 9(Suppl 1), S64–S81. https://doi.org/10.21037/jtd.2017.03.149.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kwekkeboom, R. F., Lei, Z., Doevendans, P. A., Musters, R. J., & Sluijter, J. P. (2014). Targeted delivery of miRNA therapeutics for cardiovascular diseases: opportunities and challenges. Clinical Science (London, England), 127(6), 351–365. https://doi.org/10.1042/CS20140005.

    Article  CAS  Google Scholar 

  64. Tadin-Strapps, M., Robinson, M., Le Voci, L., Andrews, L., Yendluri, S., Williams, S., et al. (2015). Development of lipoprotein(a) siRNAs for mechanism of action studies in non-human primate models of atherosclerosis. Journal of Cardiovascular Translational Research, 8(1), 44–53. https://doi.org/10.1007/s12265-014-9605-1.

    Article  PubMed  Google Scholar 

  65. Zhou, F., Jia, X., Yang, Q., Yang, Y., Zhao, Y., Fan, Y., et al. (2016). Targeted delivery of microRNA-126 to vascular endothelial cells via REDV peptide modified PEG-trimethyl chitosan. Biomaterials Science, 4(5), 849–856. https://doi.org/10.1039/c5bm00629e.

    Article  CAS  PubMed  Google Scholar 

  66. Zhou, F., Jia, X., Yang, Y., Yang, Q., Gao, C., Hu, S., et al. (2016). Nanofiber-mediated microRNA-126 delivery to vascular endothelial cells for blood vessel regeneration. Acta Biomaterialia, 43, 303–313. https://doi.org/10.1016/j.actbio.2016.07.048.

    Article  CAS  PubMed  Google Scholar 

  67. Navickas, R., Gal, D., Laucevicius, A., Taparauskaite, A., Zdanyte, M., & Holvoet, P. (2016). Identifying circulating microRNAs as biomarkers of cardiovascular disease: a systematic review. Cardiovascular Research, 111(4), 322–337. https://doi.org/10.1093/cvr/cvw174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kasner, M., Gast, M., Galuszka, O., Stroux, A., Rutschow, S., Wang, X., et al. (2016). Circulating exosomal microRNAs predict functional recovery after MitraClip repair of severe mitral regurgitation. International Journal of Cardiology, 215, 402–405. https://doi.org/10.1016/j.ijcard.2016.04.018.

    Article  CAS  PubMed  Google Scholar 

  69. Eliasson, L., & Esguerra, J. L. (2014). Role of non-coding RNAs in pancreatic beta-cell development and physiology. Acta Physiologica (Oxford, England), 211(2), 273–284. https://doi.org/10.1111/apha.12285.

    Article  CAS  Google Scholar 

  70. Guglielmi, V., D'Adamo, M., Menghini, R., Cardellini, M., Gentileschi, P., Federici, M., et al. (2017). MicroRNA 21 is up-regulated in adipose tissue of obese diabetic subjects. Nutrition Healthy Aging, 4(2), 141–145. https://doi.org/10.3233/NHA-160020.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Kaviani, M., Azarpira, N., Karimi, M. H., & Al-Abdullah, I. (2016). The role of microRNAs in islet beta-cell development. Cell Biology International, 40(12), 1248–1255. https://doi.org/10.1002/cbin.10691.

    Article  CAS  PubMed  Google Scholar 

  72. Pishavar, E., & Behravan, J. (2017). miR-126 as a therapeutic agent for diabetes mellitus. Current Pharmaceutical Design, 23(22),3309–3314. https://doi.org/10.2174/1381612823666170424120121.

  73. de Gonzalo-Calvo, D., van der Meer, R. W., Rijzewijk, L. J., Smit, J. W., Revuelta-Lopez, E., Nasarre, L., et al. (2017). Serum microRNA-1 and microRNA-133a levels reflect myocardial steatosis in uncomplicated type 2 diabetes. Scientific Reports, 7(1), 47. https://doi.org/10.1038/s41598-017-00070-6.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Zou, H. L., Wang, Y., Gang, Q., Zhang, Y., & Sun, Y. (2017). Plasma level of miR-93 is associated with higher risk to develop type 2 diabetic retinopathy. Graefe's Archive for Clinical and Experimental Ophthalmology, 255(6), 1159–1166. https://doi.org/10.1007/s00417-017-3638-5.

  75. Willeit, P., Skroblin, P., Moschen, A. R., Yin, X., Kaudewitz, D., Zampetaki, A., et al. (2017). Circulating microRNA-122 is associated with the risk of new-onset metabolic syndrome and type 2 diabetes. Diabetes, 66(2), 347–357. https://doi.org/10.2337/db16-0731.

    Article  CAS  PubMed  Google Scholar 

  76. Zhu, Y., Tian, F., Li, H., Zhou, Y., Lu, J., & Ge, Q. (2015). Profiling maternal plasma microRNA expression in early pregnancy to predict gestational diabetes mellitus. International Journal of Gynaecology and Obstetrics, 130(1), 49–53. https://doi.org/10.1016/j.ijgo.2015.01.010.

    Article  CAS  PubMed  Google Scholar 

  77. Sam, M. R., Azadbakhsh, A. S., Farokhi, F., Rezazadeh, K., Sam, S., Zomorodipour, A., et al. (2016). Genetic modification of bone-marrow mesenchymal stem cells and hematopoietic cells with human coagulation factor IX-expressing plasmids. Biologicals, 44(3), 170–177. https://doi.org/10.1016/j.biologicals.2016.01.002.

    Article  CAS  PubMed  Google Scholar 

  78. Wang, W., Li, C., Li, W., Kong, L., Qian, A., Hu, N., et al. (2014). MiR-150 enhances the motility of EPCs in vitro and promotes EPCs homing and thrombus resolving in vivo. Thrombosis Research, 133(4), 590–598. https://doi.org/10.1016/j.thromres.2013.12.038.

    Article  CAS  PubMed  Google Scholar 

  79. Huleihel, L., Sellares, J., Cardenes, N., Alvarez, D., Faner, R., Sakamoto, K., et al. (2017). Modified mesenchymal stem cells using miRNA transduction alter lung injury in a bleomycin model. American Journal of Physiology Lung Cellular and Molecular Physiology, 313(1), L92–L103. https://doi.org/10.1152/ajplung.00323.2016.

  80. Qu, Y., Zhang, Q., Cai, X., Li, F., Ma, Z., Xu, M., et al. (2017). Exosomes derived from miR-181-5p-modified adipose-derived mesenchymal stem cells prevent liver fibrosis via autophagy activation. Journal of Cellular and Molecular Medicine, 21(10), 2491–2502. https://doi.org/10.1111/jcmm.13170.

  81. Wei, G. J., An, G., Shi, Z. W., Wang, K. F., Guan, Y., Wang, Y. S., et al. (2017). Suppression of microRNA-383 enhances therapeutic potential of human bone-marrow-derived mesenchymal stem cells in treating spinal cord injury via GDNF. Cellular Physiology and Biochemistry, 41(4), 1435–1444. https://doi.org/10.1159/000468057.

    Article  CAS  PubMed  Google Scholar 

  82. Pan, Y., Shu, X., Sun, L., Yu, L., Sun, L., Yang, Z., et al. (2017). miR196a5p modulates gastric cancer stem cell characteristics by targeting Smad4. International Journal of Oncology, 50(6), 1965–1976. https://doi.org/10.3892/ijo.2017.3965.

  83. Wang, L., Wang, J., Li, Z., Liu, Y., Jiang, M., Li, Y., et al. (2016). Silencing stem cell factor attenuates stemness and inhibits migration of cancer stem cells derived from Lewis lung carcinoma cells. Tumour Biology, 37(6), 7213–7227. https://doi.org/10.1007/s13277-015-4577-6.

    Article  PubMed  Google Scholar 

  84. Whitehead, K. A., Langer, R., & Anderson, D. G. (2009). Knocking down barriers: advances in siRNA delivery. Nature Reviews. Drug Discovery, 8(2), 129–138. https://doi.org/10.1038/nrd2742.

    Article  CAS  PubMed  Google Scholar 

  85. Hickerson, R. P., Vlassov, A. V., Wang, Q., Leake, D., Ilves, H., Gonzalez-Gonzalez, E., et al. (2008). Stability study of unmodified siRNA and relevance to clinical use. Oligonucleotides, 18(4), 345–354. https://doi.org/10.1089/oli.2008.0149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sarett, S. M., Kilchrist, K. V., Miteva, M., & Duvall, C. L. (2015). Conjugation of palmitic acid improves potency and longevity of siRNA delivered via endosomolytic polymer nanoparticles. Journal of Biomedical Materials Research. Part A, 103(9), 3107–3116. https://doi.org/10.1002/jbm.a.35413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bramsen, J. B., & Kjems, J. (2010). Chemical modification of small interfering RNA. Methods in Molecular Biology, 721, 77–103. https://doi.org/10.1007/978-1-61779-037-9_5.

    Article  CAS  Google Scholar 

  88. Lee, S. J., Son, S., Yhee, J. Y., Choi, K., Kwon, I. C., Kim, S. H., et al. (2013). Structural modification of siRNA for efficient gene silencing. Biotechnology Advances, 31(5), 491–503. https://doi.org/10.1016/j.biotechadv.2012.09.002.

    Article  CAS  PubMed  Google Scholar 

  89. Tokatlian, T., & Segura, T. (2010). siRNA applications in nanomedicine. Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology, 2(3), 305–315. https://doi.org/10.1002/wnan.81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Behlke, M. A. (2008). Chemical modification of siRNAs for in vivo use. Oligonucleotides, 18(4), 305–319. https://doi.org/10.1089/oli.2008.0164.

    Article  CAS  PubMed  Google Scholar 

  91. Bramsen, J. B., & Kjems, J. (2013). Engineering small interfering RNAs by strategic chemical modification. Methods in Molecular Biology, 942, 87–109. https://doi.org/10.1007/978-1-62703-119-6_5.

    Article  CAS  PubMed  Google Scholar 

  92. Wang, J., Lu, Z., Wientjes, M. G., & Au, J. L. (2010). Delivery of siRNA therapeutics: barriers and carriers. The AAPS Journal, 12(4), 492–503. https://doi.org/10.1208/s12248-010-9210-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Danquah, M. K., Zhang, X. A., & Mahato, R. I. (2011). Extravasation of polymeric nanomedicines across tumor vasculature. Advanced Drug Delivery Reviews, 63(8), 623–639. https://doi.org/10.1016/j.addr.2010.11.005.

    Article  PubMed  CAS  Google Scholar 

  94. Raouane, M., Desmaele, D., Urbinati, G., Massaad-Massade, L., & Couvreur, P. (2012). Lipid conjugated oligonucleotides: a useful strategy for delivery. Bioconjugate Chemistry, 23(6), 1091–1104. https://doi.org/10.1021/bc200422w.

    Article  CAS  PubMed  Google Scholar 

  95. Layek, B., Lipp, L., & Singh, J. (2015). Cell penetrating peptide conjugated chitosan for enhanced delivery of nucleic acid. International Journal of Molecular Sciences, 16(12), 28912–28930. https://doi.org/10.3390/ijms161226142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. O'Loughlin, A. J., Mager, I., de Jong, O. G., Varela, M. A., Schiffelers, R. M., El Andaloussi, S., et al. (2017). Functional delivery of lipid-conjugated siRNA by extracellular vesicles. Molecular Therapy, 25(7), 1580–1587. https://doi.org/10.1016/j.ymthe.2017.03.021.

  97. Powell, D., Chandra, S., Dodson, K., Shaheen, F., Wiltz, K., Ireland, S., et al. (2017). Aptamer-functionalized hybrid nanoparticle for the treatment of breast cancer. European Journal of Pharmaceutics and Biopharmaceutics, 114, 108–118. https://doi.org/10.1016/j.ejpb.2017.01.011.

    Article  CAS  PubMed  Google Scholar 

  98. Bruck, J., Pascolo, S., Fuchs, K., Kellerer, C., Glocova, I., Geisel, J., et al. (2015). Cholesterol modification of p40-specific small interfering RNA enables therapeutic targeting of dendritic cells. Journal of Immunology, 195(5), 2216–2223. https://doi.org/10.4049/jimmunol.1402989.

    Article  CAS  Google Scholar 

  99. Wang, Y., Chen, X., Tian, B., Liu, J., Yang, L., Zeng, L., et al. (2017). Nucleolin-targeted extracellular vesicles as a versatile platform for biologics delivery to breast cancer. Theranostics, 7(5), 1360–1372. https://doi.org/10.7150/thno.16532.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Akhtar, S., & Benter, I. F. (2007). Nonviral delivery of synthetic siRNAs in vivo. The Journal of Clinical Investigation, 117(12), 3623–3632. https://doi.org/10.1172/JCI33494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Semple, S. C., Akinc, A., Chen, J., Sandhu, A. P., Mui, B. L., Cho, C. K., et al. (2010). Rational design of cationic lipids for siRNA delivery. Nature Biotechnology, 28(2), 172–176. https://doi.org/10.1038/nbt.1602.

    Article  CAS  PubMed  Google Scholar 

  102. Meng, Z., Zhang, X., Wu, J., Pei, R., Xu, Y., Yang, D., et al. (2013). RNAi induces innate immunity through multiple cellular signaling pathways. PLoS One, 8(5), e64708. https://doi.org/10.1371/journal.pone.0064708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Meng, Z., & Lu, M. (2017). RNA interference-induced innate immunity, off-target effect, or immune adjuvant? Frontiers in Immunology, 8, 331. https://doi.org/10.3389/fimmu.2017.00331.

    PubMed  PubMed Central  Google Scholar 

  104. Jackson, A. L., & Linsley, P. S. (2010). Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nature Reviews. Drug Discovery, 9(1), 57–67. https://doi.org/10.1038/nrd3010.

    Article  CAS  PubMed  Google Scholar 

  105. Schluep, T., Lickliter, J., Hamilton, J., Lewis, D. L., Lai, C. L., Lau, J. Y., et al. (2017). Safety, tolerability, and pharmacokinetics of ARC-520 injection, an RNA interference-based therapeutic for the treatment of chronic hepatitis B virus infection, in healthy volunteers. Clinical Pharmacol Drug Development, 6(4), 350–362.https://doi.org/10.1002/cpdd.318.

  106. Beg, M. S., Brenner, A. J., Sachdev, J., Borad, M., Kang, Y. K., Stoudemire, J., et al. (2017). Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. Investigational New Drugs, 35(2), 180–188. https://doi.org/10.1007/s10637-016-0407-y.

    Article  CAS  PubMed  Google Scholar 

  107. Valenzuela, R. A., Suter, S. R., Ball-Jones, A. A., Ibarra-Soza, J. M., Zheng, Y., & Beal, P. A. (2015). Base modification strategies to modulate immune stimulation by an siRNA. Chembiochem, 16(2), 262–267. https://doi.org/10.1002/cbic.201402551.

    Article  CAS  PubMed  Google Scholar 

  108. Grimm, D. (2009). Small silencing RNAs: state-of-the-art. Advanced Drug Delivery Reviews, 61(9), 672–703. https://doi.org/10.1016/j.addr.2009.05.002.

    Article  CAS  PubMed  Google Scholar 

  109. Giacca, M., & Zacchigna, S. (2012). Virus-mediated gene delivery for human gene therapy. Journal of Controlled Release, 161(2), 377–388. https://doi.org/10.1016/j.jconrel.2012.04.008.

    Article  CAS  PubMed  Google Scholar 

  110. Keller, M. (2009). Nanomedicinal delivery approaches for therapeutic siRNA. International Journal of Pharmaceutics, 379(2), 210–211. https://doi.org/10.1016/j.ijpharm.2009.03.038.

    Article  CAS  PubMed  Google Scholar 

  111. Rezaee, M., Oskuee, R. K., Nassirli, H., & Malaekeh-Nikouei, B. (2016). Progress in the development of lipopolyplexes as efficient non-viral gene delivery systems. Journal of Controlled Release, 236, 1–14. https://doi.org/10.1016/j.jconrel.2016.06.023.

    Article  CAS  PubMed  Google Scholar 

  112. Chapoy-Villanueva, H., Martinez-Carlin, I., Lopez-Berestein, G., & Chavez-Reyes, A. (2015). Therapeutic silencing of HPV 16 E7 by systemic administration of siRNA-neutral DOPC nanoliposome in a murine cervical cancer model with obesity. Journal of BUON, 20(6), 1471–1479.

    PubMed  Google Scholar 

  113. Dunne, P. D., Dasgupta, S., Blayney, J. K., McArt, D. G., Redmond, K. L., Weir, J. A., et al. (2016). EphA2 expression is a key driver of migration and invasion and a poor prognostic marker in colorectal cancer. Clinical Cancer Research, 22(1), 230–242. https://doi.org/10.1158/1078-0432.CCR-15-0603.

    Article  CAS  PubMed  Google Scholar 

  114. Song, W., Hwang, Y., Youngblood, V. M., Cook, R. S., Balko, J. M., Chen, J., et al. (2017). Targeting EphA2 impairs cell cycle progression and growth of basal-like/triple-negative breast cancers. Oncogene, 36(40), 5620–5630. https://doi.org/10.1038/onc.2017.170.

  115. Landen Jr., C. N., Chavez-Reyes, A., Bucana, C., Schmandt, R., Deavers, M. T., Lopez-Berestein, G., et al. (2005). Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery. Cancer Research, 65(15), 6910–6918. https://doi.org/10.1158/0008-5472.CAN-05-0530.

    Article  CAS  PubMed  Google Scholar 

  116. Wagner, M. J., Mitra, R., McArthur, M. J., Baze, W., Barnhart, K., Wu, S. Y., et al. (2017). Preclinical mammalian safety studies of EPHARNA (DOPC nanoliposomal EphA2-targeted siRNA). Molecular Cancer Therapeutics, 16(6), 1114–1123. https://doi.org/10.1158/1535-7163.MCT-16-0541.

    Article  CAS  PubMed  Google Scholar 

  117. Fan, Y., Chen, C., Huang, Y., Zhang, F., & Lin, G. (2017). Study of the pH-sensitive mechanism of tumor-targeting liposomes. Colloids and Surfaces. B, Biointerfaces, 151, 19–25. https://doi.org/10.1016/j.colsurfb.2016.11.042.

    Article  CAS  PubMed  Google Scholar 

  118. Gujrati, M., Vaidya, A. M., Mack, M., Snyder, D., Malamas, A., & Lu, Z. R. (2016). Targeted dual pH-sensitive lipid ECO/siRNA self-assembly nanoparticles facilitate in vivo cytosolic sieIF4E delivery and overcome paclitaxel resistance in breast cancer therapy. Advanced Healthcare Materials, 5(22), 2882–2895. https://doi.org/10.1002/adhm.201600677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Iversen, F., Yang, C., Dagnaes-Hansen, F., Schaffert, D. H., Kjems, J., & Gao, S. (2013). Optimized siRNA-PEG conjugates for extended blood circulation and reduced urine excretion in mice. Theranostics, 3(3), 201–209. https://doi.org/10.7150/thno.5743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Nag, O. K., & Awasthi, V. (2013). Surface engineering of liposomes for stealth behavior. Pharmaceutics, 5(4), 542–569. https://doi.org/10.3390/pharmaceutics5040542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Chauhan, H., Mohapatra, S., Munt, D. J., Chandratre, S., & Dash, A. (2016). Physical-chemical characterization and formulation considerations for solid lipid nanoparticles. AAPS PharmSciTech, 17(3), 640–651. https://doi.org/10.1208/s12249-015-0394-x.

    Article  CAS  PubMed  Google Scholar 

  122. Botto, C., Mauro, N., Amore, E., Martorana, E., Giammona, G., & Bondi, M. L. (2017). Surfactant effect on the physicochemical characteristics of cationic solid lipid nanoparticles. International Journal of Pharmaceutics, 516(1–2), 334–341. https://doi.org/10.1016/j.ijpharm.2016.11.052.

    Article  CAS  PubMed  Google Scholar 

  123. Lobovkina, T., Jacobson, G. B., Gonzalez-Gonzalez, E., Hickerson, R. P., Leake, D., Kaspar, R. L., et al. (2011). In vivo sustained release of siRNA from solid lipid nanoparticles. ACS Nano, 5(12), 9977–9983. https://doi.org/10.1021/nn203745n.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Yu, Y. H., Kim, E., Park, D. E., Shim, G., Lee, S., Kim, Y. B., et al. (2012). Cationic solid lipid nanoparticles for co-delivery of paclitaxel and siRNA. European Journal of Pharmaceutics and Biopharmaceutics, 80(2), 268–273. https://doi.org/10.1016/j.ejpb.2011.11.002.

    Article  CAS  PubMed  Google Scholar 

  125. Jin, J., Bae, K. H., Yang, H., Lee, S. J., Kim, H., Kim, Y., et al. (2011). In vivo specific delivery of c-Met siRNA to glioblastoma using cationic solid lipid nanoparticles. Bioconjugate Chemistry, 22(12), 2568–2572. https://doi.org/10.1021/bc200406n.

    Article  CAS  PubMed  Google Scholar 

  126. Xue, H. Y., Tran, N., & Wong, H. L. (2016). A biodistribution study of solid lipid-polyethyleneimine hybrid nanocarrier for cancer RNAi therapy. European Journal of Pharmaceutics and Biopharmaceutics, 108, 68–75. https://doi.org/10.1016/j.ejpb.2016.08.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Naseri, N., Valizadeh, H., & Zakeri-Milani, P. (2015). Solid lipid nanoparticles and nanostructured lipid carriers: structure, preparation and application. Adv Pharm Bull, 5(3), 305–313. https://doi.org/10.15171/apb.2015.043.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Han, Y., Li, Y., Zhang, P., Sun, J., Li, X., Sun, X., et al. (2016). Nanostructured lipid carriers as novel drug delivery system for lung cancer gene therapy. Pharmaceutical Development and Technology, 21(3), 277–281. https://doi.org/10.3109/10837450.2014.996900.

    Article  CAS  PubMed  Google Scholar 

  129. Shao, Z., Shao, J., Tan, B., Guan, S., Liu, Z., Zhao, Z., et al. (2015). Targeted lung cancer therapy: preparation and optimization of transferrin-decorated nanostructured lipid carriers as novel nanomedicine for co-delivery of anticancer drugs and DNA. International Journal of Nanomedicine, 10, 1223–1233. https://doi.org/10.2147/IJN.S77837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Taratula, O., Kuzmov, A., Shah, M., Garbuzenko, O. B., & Minko, T. (2013). Nanostructured lipid carriers as multifunctional nanomedicine platform for pulmonary co-delivery of anticancer drugs and siRNA. Journal of Controlled Release, 171(3), 349–357. https://doi.org/10.1016/j.jconrel.2013.04.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Xue, H. Y., & Wong, H. L. (2011). Tailoring nanostructured solid-lipid carriers for time-controlled intracellular siRNA kinetics to sustain RNAi-mediated chemosensitization. Biomaterials, 32(10), 2662–2672. https://doi.org/10.1016/j.biomaterials.2010.12.029.

    Article  CAS  PubMed  Google Scholar 

  132. Breunig, M., Lungwitz, U., Liebl, R., & Goepferich, A. (2007). Breaking up the correlation between efficacy and toxicity for nonviral gene delivery. Proceedings of the National Academy of Sciences of the United States of America, 104(36), 14454–14459. https://doi.org/10.1073/pnas.0703882104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Dominska, M., & Dykxhoorn, D. M. (2010). Breaking down the barriers: siRNA delivery and endosome escape. Journal of Cell Science, 123(Pt 8), 1183–1189. https://doi.org/10.1242/jcs.066399.

    Article  CAS  PubMed  Google Scholar 

  134. Gomes-da-Silva, L. C., Fonseca, N. A., Moura, V., Pedroso de Lima, M. C., Simoes, S., & Moreira, J. N. (2012). Lipid-based nanoparticles for siRNA delivery in cancer therapy: paradigms and challenges. Accounts of Chemical Research, 45(7), 1163–1171. https://doi.org/10.1021/ar300048p.

    Article  CAS  PubMed  Google Scholar 

  135. Tros de Ilarduya, C., Sun, Y., & Duzgunes, N. (2010). Gene delivery by lipoplexes and polyplexes. European Journal of Pharmaceutical Sciences, 40(3), 159–170. https://doi.org/10.1016/j.ejps.2010.03.019.

    Article  CAS  PubMed  Google Scholar 

  136. Yang, C., Gao, S., Dagnaes-Hansen, F., Jakobsen, M., & Kjems, J. (2017). Impact of PEG chain length on the physical properties and bioactivity of PEGylated chitosan/siRNA nanoparticles in vitro and in vivo. ACS Applied Materials & Interfaces, 9(14), 12203–12216. https://doi.org/10.1021/acsami.6b16556.

    Article  CAS  Google Scholar 

  137. Sun, P., Huang, W., Kang, L., Jin, M., Fan, B., Jin, H., et al. (2017). siRNA-loaded poly(histidine-arginine)6-modified chitosan nanoparticle with enhanced cell-penetrating and endosomal escape capacities for suppressing breast tumor metastasis. International Journal of Nanomedicine, 12, 3221–3234. https://doi.org/10.2147/IJN.S129436.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Gu, J., Al-Bayati, K., & Ho, E. A. (2017). Development of antibody-modified chitosan nanoparticles for the targeted delivery of siRNA across the blood-brain barrier as a strategy for inhibiting HIV replication in astrocytes. Drug Delivery and Translational Research, 7(4), 497–506. https://doi.org/10.1007/s13346-017-0368-5.

  139. Gao, L. Y., Liu, X. Y., Chen, C. J., Wang, J. C., Feng, Q., Yu, M. Z., et al. (2014). Core-shell type lipid/rPAA-Chol polymer hybrid nanoparticles for in vivo siRNA delivery. Biomaterials, 35(6), 2066–2078. https://doi.org/10.1016/j.biomaterials.2013.11.046.

    Article  CAS  PubMed  Google Scholar 

  140. Zhao, X., Li, F., Li, Y., Wang, H., Ren, H., Chen, J., et al. (2015). Co-delivery of HIF1alpha siRNA and gemcitabine via biocompatible lipid-polymer hybrid nanoparticles for effective treatment of pancreatic cancer. Biomaterials, 46, 13–25. https://doi.org/10.1016/j.biomaterials.2014.12.028.

    Article  CAS  PubMed  Google Scholar 

  141. Yang, X. Z., Dou, S., Wang, Y. C., Long, H. Y., Xiong, M. H., Mao, C. Q., et al. (2012). Single-step assembly of cationic lipid-polymer hybrid nanoparticles for systemic delivery of siRNA. ACS Nano, 6(6), 4955–4965. https://doi.org/10.1021/nn300500u.

    Article  CAS  PubMed  Google Scholar 

  142. Li, Y., Huang, X., Lee, R. J., Qi, Y., Wang, K., Hao, F., et al. (2016). Synthesis of polymer-lipid nanoparticles by microfluidic focusing for siRNA delivery. Molecules, 21(10). https://doi.org/10.3390/molecules21101314.

  143. Ki, M. H., Kim, J. E., Lee, Y. N., Noh, S. M., An, S. W., Cho, H. J., et al. (2014). Chitosan-based hybrid nanocomplex for siRNA delivery and its application for cancer therapy. Pharmaceutical Research, 31(12), 3323–3334. https://doi.org/10.1007/s11095-014-1422-3.

    Article  CAS  PubMed  Google Scholar 

  144. Zhong, J., Huang, H. L., Li, J., Qian, F. C., Li, L. Q., Niu, P. P., et al. (2015). Development of hybrid-type modified chitosan derivative nanoparticles for the intracellular delivery of midkine-siRNA in hepatocellular carcinoma cells. Hepatobiliary & Pancreatic Diseases International, 14(1), 82–89.

    Article  Google Scholar 

  145. Ju, Z., Ma, J., Wang, C., Yu, J., Qiao, Y., & Hei, F. (2017). Exosomes from iPSCs delivering siRNA attenuate intracellular adhesion molecule-1 expression and neutrophils adhesion in pulmonary microvascular endothelial cells. Inflammation, 40(2), 486–496. https://doi.org/10.1007/s10753-016-0494-0.

    Article  CAS  PubMed  Google Scholar 

  146. Thery, C., Zitvogel, L., & Amigorena, S. (2002). Exosomes: composition, biogenesis and function. Nature Reviews. Immunology, 2(8), 569–579. https://doi.org/10.1038/nri855.

    Article  CAS  PubMed  Google Scholar 

  147. Lee, H. M., Choi, E. J., Kim, J. H., Kim, T. D., Kim, Y. K., Kang, C., et al. (2010). A membranous form of ICAM-1 on exosomes efficiently blocks leukocyte adhesion to activated endothelial cells. Biochemical and Biophysical Research Communications, 397(2), 251–256. https://doi.org/10.1016/j.bbrc.2010.05.094.

    Article  CAS  PubMed  Google Scholar 

  148. Yang, T., Martin, P., Fogarty, B., Brown, A., Schurman, K., Phipps, R., et al. (2015). Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio rerio. Pharmaceutical Research, 32(6), 2003–2014. https://doi.org/10.1007/s11095-014-1593-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Yim, N., Ryu, S. W., Choi, K., Lee, K. R., Lee, S., Choi, H., et al. (2016). Exosome engineering for efficient intracellular delivery of soluble proteins using optically reversible protein-protein interaction module. Nature Communications, 7, 12277. https://doi.org/10.1038/ncomms12277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kooijmans, S. A., Vader, P., van Dommelen, S. M., van Solinge, W. W., & Schiffelers, R. M. (2012). Exosome mimetics: a novel class of drug delivery systems. International Journal of Nanomedicine, 7, 1525–1541. https://doi.org/10.2147/IJN.S29661.

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Ha, D., Yang, N., & Nadithe, V. (2016). Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharmaceutica Sinica B, 6(4), 287–296. https://doi.org/10.1016/j.apsb.2016.02.001.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Tian, Y., Li, S., Song, J., Ji, T., Zhu, M., Anderson, G. J., et al. (2014). A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials, 35(7), 2383–2390. https://doi.org/10.1016/j.biomaterials.2013.11.083.

    Article  CAS  PubMed  Google Scholar 

  153. Cooper, J. M., Wiklander, P. B., Nordin, J. Z., Al-Shawi, R., Wood, M. J., Vithlani, M., et al. (2014). Systemic exosomal siRNA delivery reduced alpha-synuclein aggregates in brains of transgenic mice. Movement Disorders, 29(12), 1476–1485. https://doi.org/10.1002/mds.25978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Sterzenbach, U., Putz, U., Low, L. H., Silke, J., Tan, S. S., & Howitt, J. (2017). Engineered exosomes as vehicles for biologically active proteins. Molecular Therapy, 25(6), 1269–1278. https://doi.org/10.1016/j.ymthe.2017.03.030.

  155. Luan, X., Sansanaphongpricha, K., Myers, I., Chen, H., Yuan, H., & Sun, D. (2017). Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta Pharmacologica Sinica, 38(6), 754–763. https://doi.org/10.1038/aps.2017.12.

  156. Ohno, S. I., Takanashi, M., Sudo, K., Ueda, S., Ishikawa, A., Matsuyama, N., et al. (2013). Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Molecular Therapy, 21(1), 185–191. https://doi.org/10.1038/mt.2012.180.

    Article  CAS  PubMed  Google Scholar 

  157. Lacko, A. G., Sabnis, N. A., Nagarajan, B., & McConathy, W. J. (2015). HDL as a drug and nucleic acid delivery vehicle. Frontiers in Pharmacology, 6, 247. https://doi.org/10.3389/fphar.2015.00247.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Mooberry, L. K., Sabnis, N. A., Panchoo, M., Nagarajan, B., & Lacko, A. G. (2016). Targeting the SR-B1 receptor as a gateway for cancer therapy and imaging. Frontiers in Pharmacology, 7, 466. https://doi.org/10.3389/fphar.2016.00466.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Shahzad, M. M., Mangala, L. S., Han, H. D., Lu, C., Bottsford-Miller, J., Nishimura, M., et al. (2011). Targeted delivery of small interfering RNA using reconstituted high-density lipoprotein nanoparticles. Neoplasia, 13(4), 309–319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Ding, Y., Wang, W., Feng, M., Wang, Y., Zhou, J., Ding, X., et al. (2012). A biomimetic nanovector-mediated targeted cholesterol-conjugated siRNA delivery for tumor gene therapy. Biomaterials, 33(34), 8893–8905. https://doi.org/10.1016/j.biomaterials.2012.08.057.

    Article  CAS  PubMed  Google Scholar 

  161. Pan, B., Ren, H., Lv, X., Zhao, Y., Yu, B., He, Y., et al. (2012). Hypochlorite-induced oxidative stress elevates the capability of HDL in promoting breast cancer metastasis. Journal of Translational Medicine, 10, 65. https://doi.org/10.1186/1479-5876-10-65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Tang, J., Kuai, R., Yuan, W., Drake, L., Moon, J. J., & Schwendeman, A. (2017). Effect of size and pegylation of liposomes and peptide-based synthetic lipoproteins on tumor targeting. Nanomedicine, 13(6), 1869–1878.https://doi.org/10.1016/j.nano.2017.04.009.

  163. Lakhin, A. V., Tarantul, V. Z., & Gening, L. V. (2013). Aptamers: problems, solutions and prospects. Acta Naturae, 5(4), 34–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Li, X., Zhao, Q., & Qiu, L. (2013). Smart ligand: aptamer-mediated targeted delivery of chemotherapeutic drugs and siRNA for cancer therapy. Journal of Controlled Release, 171(2), 152–162. https://doi.org/10.1016/j.jconrel.2013.06.006.

    Article  CAS  PubMed  Google Scholar 

  165. Bagalkot, V., & Gao, X. (2011). siRNA-aptamer chimeras on nanoparticles: preserving targeting functionality for effective gene silencing. ACS Nano, 5(10), 8131–8139. https://doi.org/10.1021/nn202772p.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Lai, W. Y., Wang, W. Y., Chang, Y. C., Chang, C. J., Yang, P. C., & Peck, K. (2014). Synergistic inhibition of lung cancer cell invasion, tumor growth and angiogenesis using aptamer-siRNA chimeras. Biomaterials, 35(9), 2905–2914. https://doi.org/10.1016/j.biomaterials.2013.12.054.

    Article  CAS  PubMed  Google Scholar 

  167. Li, L., Hou, J., Liu, X., Guo, Y., Wu, Y., Zhang, L., et al. (2014). Nucleolin-targeting liposomes guided by aptamer AS1411 for the delivery of siRNA for the treatment of malignant melanomas. Biomaterials, 35(12), 3840–3850. https://doi.org/10.1016/j.biomaterials.2014.01.019.

    Article  CAS  PubMed  Google Scholar 

  168. Binzel, D. W., Shu, Y., Li, H., Sun, M., Zhang, Q., Shu, D., et al. (2016). Specific delivery of MiRNA for high efficient inhibition of prostate cancer by RNA nanotechnology. Molecular Therapy, 24(7), 1267–1277. https://doi.org/10.1038/mt.2016.85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Lee, S. K., Siefert, A., Beloor, J., Fahmy, T. M., & Kumar, P. (2012). Cell-specific siRNA delivery by peptides and antibodies. Methods in Enzymology, 502, 91–122. https://doi.org/10.1016/B978-0-12-416039-2.00005-7.

    Article  CAS  PubMed  Google Scholar 

  170. Rengaswamy, V., Zimmer, D., Suss, R., & Rossler, J. (2016). RGD liposome-protamine-siRNA (LPR) nanoparticles targeting PAX3-FOXO1 for alveolar rhabdomyosarcoma therapy. Journal of Controlled Release, 235, 319–327. https://doi.org/10.1016/j.jconrel.2016.05.063.

    Article  CAS  PubMed  Google Scholar 

  171. Palanca-Wessels, M. C., Booth, G. C., Convertine, A. J., Lundy, B. B., Berguig, G. Y., Press, M. F., et al. (2016). Antibody targeting facilitates effective intratumoral siRNA nanoparticle delivery to HER2-overexpressing cancer cells. Oncotarget, 7(8), 9561–9575. https://doi.org/10.18632/oncotarget.7076.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Guo, J., Russell, E. G., Darcy, R., Cotter, T. G., McKenna, S. L., Cahill, M. R., et al. (2017). Antibody-targeted cyclodextrin-based nanoparticles for siRNA delivery in the treatment of acute myeloid leukemia: Physicochemical characteristics, in vitro mechanistic studies, and ex vivo patient derived therapeutic efficacy. Molecular Pharmaceutics, 14(3), 940–952. https://doi.org/10.1021/acs.molpharmaceut.6b01150.

    Article  CAS  PubMed  Google Scholar 

  173. Jones, S. K., Lizzio, V., & Merkel, O. M. (2016). Folate receptor targeted delivery of siRNA and paclitaxel to ovarian cancer cells via folate conjugated triblock copolymer to overcome TLR4 driven chemotherapy resistance. Biomacromolecules, 17(1), 76–87. https://doi.org/10.1021/acs.biomac.5b01189.

    Article  CAS  PubMed  Google Scholar 

  174. Kanasty, R., Dorkin, J. R., Vegas, A., & Anderson, D. (2013). Delivery materials for siRNA therapeutics. Nature Materials, 12(11), 967–977. https://doi.org/10.1038/nmat3765.

    Article  CAS  PubMed  Google Scholar 

  175. Wang, J., Mi, P., Lin, G., Wang, Y. X., Liu, G., & Chen, X. (2016). Imaging-guided delivery of RNAi for anticancer treatment. Advanced Drug Delivery Reviews, 104, 44–60. https://doi.org/10.1016/j.addr.2016.01.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Wang, F., Song, X., Li, X., Xin, J., Wang, S., Yang, W., et al. (2013). Noninvasive visualization of microRNA-16 in the chemoresistance of gastric cancer using a dual reporter gene imaging system. PLoS One, 8(4), e61792. https://doi.org/10.1371/journal.pone.0061792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Lin, Q., Huang, H., Chen, J., & Zheng, G. (2016). Using fluorescence imaging to track drug delivery and guide treatment planning in vivo. Methods in Molecular Biology, 1444, 153–166. https://doi.org/10.1007/978-1-4939-3721-9_14.

    Article  PubMed  Google Scholar 

  178. Sita, T. L., Kouri, F. M., Hurley, L. A., Merkel, T. J., Chalastanis, A., May, J. L., et al. (2017). Dual bioluminescence and near-infrared fluorescence monitoring to evaluate spherical nucleic acid nanoconjugate activity in vivo. Proceedings of the National Academy of Sciences of the United States of America, 114(16), 4129–4134. https://doi.org/10.1073/pnas.1702736114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Chen, Y., Wang, X., Liu, T., Zhang, D. S., Wang, Y., Gu, H., et al. (2015). Highly effective antiangiogenesis via magnetic mesoporous silica-based siRNA vehicle targeting the VEGF gene for orthotopic ovarian cancer therapy. International Journal of Nanomedicine, 10, 2579–2594. https://doi.org/10.2147/IJN.S78774.

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Veiseh, O., Kievit, F. M., Fang, C., Mu, N., Jana, S., Leung, M. C., et al. (2010). Chlorotoxin bound magnetic nanovector tailored for cancer cell targeting, imaging, and siRNA delivery. Biomaterials, 31(31), 8032–8042. https://doi.org/10.1016/j.biomaterials.2010.07.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Wang, P., & Moore, A. (2016). In vivo magnetic resonance imaging of small interfering RNA nanodelivery to pancreatic islets. Methods in Molecular Biology, 1372, 25–36. https://doi.org/10.1007/978-1-4939-3148-4_2.

    Article  CAS  PubMed  Google Scholar 

  182. Gottesman, M. M., & Ling, V. (2006). The molecular basis of multidrug resistance in cancer: the early years of P-glycoprotein research. FEBS Letters, 580(4), 998–1009. https://doi.org/10.1016/j.febslet.2005.12.060.

    Article  CAS  PubMed  Google Scholar 

  183. Sims, J. T., Ganguly, S. S., Bennett, H., Friend, J. W., Tepe, J., & Plattner, R. (2013). Imatinib reverses doxorubicin resistance by affecting activation of STAT3-dependent NF-kappaB and HSP27/p38/AKT pathways and by inhibiting ABCB1. PLoS One, 8(1), e55509. https://doi.org/10.1371/journal.pone.0055509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Higgins, C. F. (2007). Multiple molecular mechanisms for multidrug resistance transporters. Nature, 446(7137), 749–757. https://doi.org/10.1038/nature05630.

    Article  CAS  PubMed  Google Scholar 

  185. Takara, K., Sakaeda, T., & Okumura, K. (2006). An update on overcoming MDR1-mediated multidrug resistance in cancer chemotherapy. Current Pharmaceutical Design, 12(3), 273–286.

    Article  CAS  PubMed  Google Scholar 

  186. Palmeira, A., Vasconcelos, M. H., Paiva, A., Fernandes, M. X., Pinto, M., & Sousa, E. (2012). Dual inhibitors of P-glycoprotein and tumor cell growth: (re)discovering thioxanthones. Biochemical Pharmacology, 83(1), 57–68. https://doi.org/10.1016/j.bcp.2011.10.004.

    Article  CAS  PubMed  Google Scholar 

  187. Xu, X., Ho, W., Zhang, X., Bertrand, N., & Farokhzad, O. (2015). Cancer nanomedicine: from targeted delivery to combination therapy. Trends in Molecular Medicine, 21(4), 223–232. https://doi.org/10.1016/j.molmed.2015.01.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Nastiuk, K. L., & Krolewski, J. J. (2016). Opportunities and challenges in combination gene cancer therapy. Advanced Drug Delivery Reviews, 98, 35–40. https://doi.org/10.1016/j.addr.2015.12.005.

    Article  CAS  PubMed  Google Scholar 

  189. Zheng, W., Yin, T., Chen, Q., Qin, X., Huang, X., Zhao, S., et al. (2016). Co-delivery of Se nanoparticles and pooled SiRNAs for overcoming drug resistance mediated by P-glycoprotein and class III beta-tubulin in drug-resistant breast cancers. Acta Biomaterialia, 31, 197–210. https://doi.org/10.1016/j.actbio.2015.11.041.

    Article  CAS  PubMed  Google Scholar 

  190. Mitchell, M. J., Chen, C. S., Ponmudi, V., Hughes, A. D., & King, M. R. (2012). E-selectin liposomal and nanotube-targeted delivery of doxorubicin to circulating tumor cells. Journal of Controlled Release, 160(3), 609–617. https://doi.org/10.1016/j.jconrel.2012.02.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Pradhan, P., Giri, J., Rieken, F., Koch, C., Mykhaylyk, O., Doblinger, M., et al. (2010). Targeted temperature sensitive magnetic liposomes for thermo-chemotherapy. Journal of Controlled Release, 142(1), 108–121. https://doi.org/10.1016/j.jconrel.2009.10.002.

    Article  CAS  PubMed  Google Scholar 

  192. Li, Y., Wang, H., Wang, K., Hu, Q., Yao, Q., Shen, Y., et al. (2017). Targeted co-delivery of PTX and TR3 siRNA by PTP peptide modified dendrimer for the treatment of pancreatic cancer. Small, 13(2). https://doi.org/10.1002/smll.201602697.

  193. Khanna, A., Mahalingam, K., Chakrabarti, D., & Periyasamy, G. (2011). Ets-1 expression and gemcitabine chemoresistance in pancreatic cancer cells. Cellular & Molecular Biology Letters, 16(1), 101–113. https://doi.org/10.2478/s11658-010-0043-z.

    Article  CAS  Google Scholar 

  194. Kars, M. D., Iseri, O. D., & Gunduz, U. (2010). Drug resistant breast cancer cells overexpress ETS1 gene. Biomedicine & Pharmacotherapy, 64(7), 458–462. https://doi.org/10.1016/j.biopha.2010.01.008.

    Article  CAS  Google Scholar 

  195. Wu, M., Liu, X., Jin, W., Li, Y., Li, Y., Hu, Q., et al. (2017). Targeting ETS1 with RNAi-based supramolecular nanoassemblies for multidrug-resistant breast cancer therapy. Journal of Controlled Release, 253, 110–121. https://doi.org/10.1016/j.jconrel.2017.03.011.

    Article  CAS  PubMed  Google Scholar 

  196. Gottesman, M. M., & Pastan, I. H. (2015). The role of multidrug resistance efflux pumps in cancer: revisiting a JNCI publication exploring expression of the MDR1 (P-glycoprotein) gene. Journal of the National Cancer Institute, 107(9), djv222. https://doi.org/10.1093/jnci/djv222.

  197. Borst, P., Evers, R., Kool, M., & Wijnholds, J. (2000). A family of drug transporters: the multidrug resistance-associated proteins. Journal of the National Cancer Institute, 92(16), 1295–1302.

    Article  CAS  PubMed  Google Scholar 

  198. Jang, M., Han, H. D., & Ahn, H. J. (2016). A RNA nanotechnology platform for a simultaneous two-in-one siRNA delivery and its application in synergistic RNAi therapy. Scientific Reports, 6, 32363. https://doi.org/10.1038/srep32363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The University of Texas MD Anderson Cancer Center is supported in part by the National Institutes of Health through Cancer Center Support Grant P30CA016672, CA217685, P50 CA098258, UH3 TR000943, U01 CA213759, R35 CA209904), the Ovarian Cancer Research Fund, Inc., CPRIT grant RP120214, DP150091, V-Foundation, the Frank McGraw Memorial Chair in Cancer Research, and the American Cancer Society Research Professor Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil K. Sood.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest related to the topics discussed here.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Mangala, L.S., Rodriguez-Aguayo, C. et al. RNA interference-based therapy and its delivery systems. Cancer Metastasis Rev 37, 107–124 (2018). https://doi.org/10.1007/s10555-017-9717-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-017-9717-6

Keywords

Navigation