Skip to main content

Advertisement

Log in

Allosteric therapies for lung cancer

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Allostery is a regulation at a distance by conveying information from one site to another and an intrinsic property of dynamic proteins. Allostery plays an essential role in receptor trafficking, signal transmission, controlled catalysis, gene turn on/off, or cell apoptosis. Allosteric mutations are considered as one of causes responsible for cancer development, leading to “allosteric diseases” by stabilizing an active or inactive conformation or changing the dynamic distribution of preexisting propagation pathways. The present article mainly focuses on the potential of allosteric therapies for lung cancer. Allosteric drugs may have several advantages over traditional drugs. The epidermal growth factor receptor mutations and signaling pathways downstream (such as PI3K/AKT/mTOR and RAS/RAF/MEK/ERK pathways) were suggested to play a key role in lung cancer and considered as targets of allosteric therapy. Some allosteric inhibitors for lung cancer-specific targets and a series of preclinical trials of allosteric inhibitors for lung cancer have been developed and reported. We expect that allosteric therapies will gain more attentions to develop combinatorial strategies for lung cancer and metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Di Paola, L., & Giuliani, A. (2015). Protein contact network topology: a natural language for allostery. Current Opinion in Structural Biology, 31, 43–48.

    Article  PubMed  Google Scholar 

  2. Nussinov, R., & Tsai, C. J. (2013). Allostery in disease and in drug discovery. Cell, 153(2), 293–305.

    Article  CAS  PubMed  Google Scholar 

  3. Tsai, C. J., Del Sol, A., & Nussinov, R. (2009). Protein allostery, signal trans- mission and dynamics: a classification scheme of allosteric mechanisms. Molecular Biosystems, 5(3), 207–216.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Changeux, J. P. (2012). Allostery and the Monod-Wyman-Changeux model after 50 years. Annual Review of Biophysics, 41, 103–133.

    Article  CAS  PubMed  Google Scholar 

  5. Collier, G., & Ortiz, V. (2013). Emerging computational approaches for the study of protein allostery. Archives Biochemistry and Biophysics, 538(1), 6–15.

    Article  CAS  Google Scholar 

  6. Manley, G., & Loria, J. P. (2012). NMR insights into protein allostery. Archives Biochemistry and Biophysics, 519(2), 223–231.

    Article  CAS  Google Scholar 

  7. Fenwick, R. B., Esteban-Martín, S., & Salvatella, X. (2014). The ensemble nature of allostery. Nature, 508(7496), 331–339.

    Article  Google Scholar 

  8. Strickland, D., Moffat, K., & Sosnick, T. R. (2008). Light-activated DNA binding in a designed allosteric protein. Proceedings of the National Academy of Sciences of the United States of America, 105(31), 10709–10714.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Csermely, P., Palotai, R., & Nussinov, R. (2010). Induced fit, conformational selection and independent dynamic segments: an extended view of binding events. Trends in Biochemical Sciences, 35(10), 539–546.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Mittag, T., Kay, L. E., & Forman-Kay, J. D. (2010). Protein dynamics and conformational disorder in molecular recognition. Journal of Molecular Recognition, 23(2), 105–116.

    CAS  PubMed  Google Scholar 

  11. Nussinov, R., Tsai, C. J., Xin, F., & Radivojac, P. (2012). Allosteric post-translational modification codes. Trends in Biochemical Sciences, 37(10), 447–455.

    Article  CAS  PubMed  Google Scholar 

  12. Ma, B., Tsai, C. J., Haliloğlu, T., & Nussinov, R. (2011). Dynamic allostery: linkers are not merely flexible. Structure, 19(7), 907–917.

    Article  CAS  PubMed  Google Scholar 

  13. del Sol, A., Tsai, C. J., Ma, B., & Nussinov, R. (2009). The origin of allosteric functional modulation: multiple pre-existing pathways. Structure, 17(8), 1042–1050.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Tsai, C. J., del Sol, A., & Nussinov, R. (2008). Allostery: absence of a change in shape does not imply that allostery is not at play. Journal of Molecular Biology, 378(1), 1–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Boehr, D. D., Nussinov, R., & Wright, P. E. (2009). The role of dynamic conformational ensembles in biomolecular recognition. Nature Chemical Biology, 5(11), 789–796.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Kar, G., Keskin, O., Gursoy, A., & Nussinov, R. (2010). Allostery and population shift in drug discovery. Current Opinion in Pharmacology, 10(6), 715–722.

    Article  CAS  PubMed  Google Scholar 

  17. Popovych, N., Sun, S., Ebright, R. H., & Kalodimos, C. G. (2006). Dynamically driven protein allostery. Nature Structural & Molecular Biology, 13(9), 831–838.

    Article  CAS  Google Scholar 

  18. Urwyler, S. (2011). Allosteric modulation of family C G-protein-coupled receptors: from molecular insights to therapeutic perspectives. Pharmacological Reviews, 63(1), 59–126.

    Article  CAS  PubMed  Google Scholar 

  19. De Lean, A., Stadel, J. M., & Lefkowitz, R. J. (1980). A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled beta- adrenergic receptor. Journal of Biological Chemistry, 255(15), 7108–7117.

    PubMed  Google Scholar 

  20. Keov, P., Sexton, P. M., & Christopoulos, A. (2011). Allosteric modulation of G protein-coupled receptors: a pharmacological perspective. Neuropharmacology, 60(1), 24–35.

    Article  CAS  PubMed  Google Scholar 

  21. Leach, K., Loiacono, R. E., Felder, C. C., McKinzie, D. L., Mogg, A., Shaw, D. B., Sexton, P. M., & Christopoulos, A. (2010). Molecular mechanisms of action and in vivo validation of an M4 muscarinic acetylcholine receptor allosteric modulator with potential antipsychotic properties. Neuropsychopharmacology, 35(4), 855–869.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Suratman, S., Leach, K., Sexton, P., Felder, C., Loiacono, R., & Christopoulos, A. (2011). Impact of species variability and ‘probe-dependence’ on the detection and in vivo validation of allosteric modulation at the M4 muscarinic acetylcholine receptor. British Journal of Pharmacology, 162(7), 1659–1670.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Valant, C., Felder, C. C., Sexton, P. M., & Christopoulos, A. (2012). Probe dependence in the allosteric modulation of a G protein-coupled receptor: implications for detection and validation of allosteric ligand effects. Molecular Pharmacology, 81(1), 41–52.

    Article  CAS  PubMed  Google Scholar 

  24. Gregory, K. J., Dong, E. N., Meiler, J., & Conn, P. J. (2011). Allosteric modulation of metabotropic glutamate receptors: structural insights and therapeutic potential. Neuropharmacology, 60(1), 66–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Hall, D. A. (2000). Modeling the functional effects of allosteric modulators at pharmacological receptors: an extension of the two-state model of receptor activation. Molecular Pharmacology, 58(6), 1412–1423.

    CAS  PubMed  Google Scholar 

  26. Christopoulos, A., & Kenakin, T. (2002). G protein-coupled receptor allosterism and complexing. Pharmacological Reviews, 54(2), 323–374.

    Article  CAS  PubMed  Google Scholar 

  27. Nussinov, R., Tsai, C. J., & Ma, B. (2013). The underappreciated role of allostery in the cellular network. Annual Review of Biophysics, 42, 169–189.

    Article  CAS  PubMed  Google Scholar 

  28. Tzeng, S. R., & Kalodimos, C. G. (2011). Protein dynamics and allostery: an NMR view. Current Opinion in Structural Biology, 21(1), 62–67.

    Article  CAS  PubMed  Google Scholar 

  29. Popovych, N., Tzeng, S. R., Tonelli, M., Ebright, R. H., & Kalodimos, C. G. (2009). Structural basis for cAMP-mediated allosteric control of the catabolite activator protein. Proceedings of the National Academy of Sciences of the United States of America, 106(17), 6927–6932.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Tzeng, S. R., & Kalodimos, C. G. (2009). Dynamic activation of an allosteric regulatory protein. Nature, 462(7271), 368–372.

    Article  CAS  PubMed  Google Scholar 

  31. Zaytseva, Y. Y., Valentino, J. D., Gulhati, P., & Evers, B. M. (2012). mTOR inhibitors in cancer therapy. Cancer Letters, 319(1), 1–7.

    Article  CAS  PubMed  Google Scholar 

  32. Goncharova, E. A. (2013). mTOR and vascular remodeling in lung diseases: current challenges and therapeutic prospects. FASEB Journal, 27(5), 1796–1807.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Geserick, C., Meyer, H. A., & Haendler, B. (2005). The role of DNA response elements as allosteric modulators of steroid receptor function. Molecular and Cellular Endocrinology, 236(1-2), 1–7.

    Article  CAS  PubMed  Google Scholar 

  34. Ma, B., Tsai, C. J., Pan, Y., & Nussinov, R. (2010). Why does binding of proteins to DNA or proteins to proteins not necessarily spell function? ACS Chemical Biology, 5(3), 265–272.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Garcia, H. G., Sanchez, A., Boedicker, J. Q., Osborne, M., Gelles, J., Kondev, J., & Phillips, R. (2012). Operator sequence alters gene expression independently of transcription factor occupancy in bacteria. Cell Reports, 2(1), 150–161.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Kim, S., Broströmer, E., Xing, D., Jin, J., Chong, S., Ge, H., Wang, S., Gu, C., Yang, L., Gao, Y. Q., Su, X. D., Sun, Y., & Xie, X. S. (2013). Probing allostery through DNA. Science, 339(6121), 816–819.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Wootten, D., Christopoulos, A., & Sexton, P. M. (2013). Emerging paradigms in GPCR allostery: implications for drug discovery. Nature Reviews Drug Discovery, 12(8), 630–644.

    Article  CAS  PubMed  Google Scholar 

  38. Schelshorn, D., Joly, F., Mutel, S., Hampe, C., Breton, B., Mutel, V., & Lütjens, R. (2012). Lateral allosterism in the glucagon receptor family: glucagon-like peptide 1 induces G-protein-coupled receptor heteromer formation. Molecular Pharmacology, 81(3), 309–318.

    Article  CAS  PubMed  Google Scholar 

  39. Foster, A. C., & Kemp, J. A. (2006). Glutamate- and GABA-based CNS therapeutics. Current Opinion in Pharmacology, 6(1), 7–17.

    Article  CAS  PubMed  Google Scholar 

  40. Lindberg, J. S., Culleton, B., Wong, G., Borah, M. F., Clark, R. V., Shapiro, W. B., Roger, S. D., Husserl, F. E., Klassen, P. S., Guo, M. D., Albizem, M. B., & Coburn, J. W. (2005). Cinacalcet HCl, an oral calcimimetic agent for the treatment of secondary hyperparathyroidism in hemodialysis and peritoneal dialysis: a randomized, double-blind, multicenter study. Journal of the American Society of Nephrology, 16(3), 800–807.

    Article  CAS  PubMed  Google Scholar 

  41. Lieberman-Blum, S. S., Fung, H. B., & Bandres, J. C. (2008). Maraviroc: a CCR5-receptor antagonist for the treatment of HIV-1 infection. Clinical Therapeutics, 30(7), 1228–1250.

    Article  CAS  PubMed  Google Scholar 

  42. Wander, S. A., Hennessy, B. T., & Slingerland, J. M. (2011). Next-generation mTOR inhibitors in clinical oncology: how pathway complexity informs therapeutic strategy. Journal of Clinical Investigation, 121(4), 1231–1241.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Lu, S., Li, S., & Zhang, J. (2014). Harnessing allostery: a novel approach to drug discovery. Medicinal Research Reviews, 34(6), 1242–1285.

    Article  CAS  PubMed  Google Scholar 

  44. Alamgeer, M., Ganju, V., & Watkins, D. N. (2013). Novel therapeutic targets in non-small cell lung cancer. Current Opinion in Pharmacology, 13(3), 394–401.

    Article  CAS  PubMed  Google Scholar 

  45. Li, T., Kung, H. J., Mack, P. C., & Gandara, D. R. (2013). Genotyping and genomic profiling of non-small-cell lung cancer: implications for current and future therapies. Journal of Clinical Oncology, 31(8), 1039–1049.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Lindeman, N. I., Cagle, P. T., Beasley, M. B., Chitale, D. A., Dacic, S., Giaccone, G., Jenkins, R. B., Kwiatkowski, D. J., Saldivar, J. S., Squire, J., Thunnissen, E., & Ladanyi, M. (2013). Molecular testing guideline for Selection of Lung Cancer Patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. Journal of Molecular Diagnostics, 15(4), 415–453.

    Article  CAS  PubMed  Google Scholar 

  47. Hynes, N. E., & MacDonald, G. (2009). ErbB receptors and signaling pathways in cancer. Current Opinion in Cell Biology, 21(2), 177–184.

    Article  CAS  PubMed  Google Scholar 

  48. Endres, N. F., Engel, K., Das, R., Kovacs, E., & Kuriyan, J. (2011). Regulation of the catalytic activity of the EGF receptor. Current Opinion in Structural Biology, 21(6), 777–784.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Zhang, X., Gureasko, J., Shen, K., Cole, P. A., & Kuriyan, J. (2006). An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell, 125(6), 1137–1149.

    Article  CAS  PubMed  Google Scholar 

  50. Jura, N., Zhang, X., Endres, N. F., Seeliger, M. A., Schindler, T., & Kuriyan, J. (2011). Catalytic control in the EGF receptor and its connection to general kinase regulatory mechanisms. Molecular Cell, 42(1), 9–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Jura, N., Endres, N. F., Engel, K., Deindl, S., Das, R., Lamers, M. H., Wemmer, D. E., Zhang, X., & Kuriyan, J. (2009). Mechanism for activation of the EGF receptor catalytic domain by the juxtamembrane segment. Cell, 137(7), 1293–1307.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Papakyriakou, A., Vourloumis, D., Tzortzatou-Stathopoulou, F., & Karpusas, M. (2009). Conformational dynamics of the EGFR kinase domain reveals structural features involved in activation. Proteins, 76(2), 375–386.

    Article  CAS  PubMed  Google Scholar 

  53. Lynch, T. J., Bell, D. W., Sordella, R., Gurubhagavatula, S., Okimoto, R. A., Brannigan, B. W., Wemmer, D. E., Zhang, X., & Kuriyan, J. (2004). Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. New England Journal of Medicine, 350(21), 2129–2139.

    Article  CAS  PubMed  Google Scholar 

  54. Paez, J. G., Jänne, P. A., Lee, J. C., Tracy, S., Greulich, H., Gabriel, S., Herman, P., Kaye, F. J., Lindeman, N., Boggon, T. J., Naoki, K., Sasaki, H., Fujii, Y., Eck, M. J., Sellers, W. R., Johnson, B. E., & Meyerson, M. (2004). EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science, 304(5676), 1497–1500.

    Article  CAS  PubMed  Google Scholar 

  55. Gazdar, A. F. (2009). Activating and resistance mutations of EGFR in non-small-cell lung cancer: role in clinical response to EGFR tyrosine kinase inhibitors. Oncogene, 28(S1), S24–S31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Yun, C. H., Boggon, T. J., Li, Y., Woo, M. S., Greulich, H., Meyerson, M., & Eck, M. J. (2007). Structures of lung cancer-derived EGFR mutants and inhibitor complexes: mechanism of activation and insights into differential inhibitor sensitivity. Cancer Cell, 11(3), 217–227.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Shan, Y., Eastwood, M. P., Zhang, X., Kim, E. T., Arkhipov, A., Dror, R. O., Jumper, J., Kuriyan, J., & Shaw, D. E. (2012). Oncogenic mutations counteract intrinsic disorder in the EGFR kinase and promote receptor dimerization. Cell, 149(4), 860–870.

    Article  CAS  PubMed  Google Scholar 

  58. Dixit, A., & Verkhivker, G. M. (2011). Computational modeling of allosteric communication reveals organizing principles of mutation-induced signaling in ABL and EGFR kinases. PLoS Computational Biology, 7(10), e1002179.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Kosaka, T., Yatabe, Y., Endoh, H., Yoshida, K., Hida, T., Tsuboi, M., Tada, H., Kuwano, H., & Mitsudomi, T. (2006). Analysis of epidermal growth factor receptor gene mutation in patients with non-small cell lung cancer and acquired resistance to gefitinib. Clinical Cancer Research, 12(19), 5764–5769.

    Article  CAS  PubMed  Google Scholar 

  60. Yun, C. H., Mengwasser, K. E., Toms, A. V., Woo, M. S., Greulich, H., Wong, K. K., Meyerson, M., & Eck, M. J. (2008). The T790 mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proceedings of the National Academy of Sciences of the United States of America, 105(6), 2070–2075.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Azam, M., Seeliger, M. A., Gray, N. S., Kuriyan, J., & Daley, G. Q. (2008). Activation of tyrosine kinases by mutation of the gatekeeper threonine. Nature Structural & Molecular Biology, 15(10), 1109–1118.

    Article  CAS  Google Scholar 

  62. Santarpia, L., Lippman, S. M., & El-Naggar, A. K. (2012). Targeting the MAPK-RAS-RAF signaling pathway in cancer therapy. Expert Opinion on Therapeutic Targets, 16(1), 103–119.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Liu, P., Cheng, H., Roberts, T. M., & Zhao, J. J. (2009). Targeting the phosphoinositide 3-kinase pathway in cancer. Nature Reviews Drug Discovery, 8(8), 627–644.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Britten, C. D. (2013). PI3K and MEK inhibitor combinations: examining the evidence in selected tumor types. Cancer Chemotherapy and Pharmacology, 71(6), 1395–1409.

    Article  CAS  PubMed  Google Scholar 

  65. Chappell, W. H., Steelman, L. S., Long, J. M., Kempf, R. C., Abrams, S. L., Franklin, R. A., Bäsecke, J., Stivala, F., Donia, M., Fagone, P., Malaponte, G., Mazzarino, M. C., Nicoletti, F., Libra, M., Maksimovic-Ivanic, D., Mijatovic, S., Montalto, G., Cervello, M., Laidler, P., Milella, M., Tafuri, A., Bonati, A., Evangelisti, C., Cocco, L., Martelli, A. M., & McCubrey, J. A. (2011). Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR inhibitors: rationale and importance to inhibiting these pathways in human health. Oncotarget, 2(3), 135–164.

    PubMed Central  PubMed  Google Scholar 

  66. McCubrey, J. A., Steelman, L. S., Chappell, W. H., Abrams, S. L., Montalto, G., Cervello, M., Nicoletti, F., Fagone, P., Malaponte, G., Mazzarino, M. C., Candido, S., Libra, M., Bäsecke, J., Mijatovic, S., Maksimovic-Ivanic, D., Milella, M., Tafuri, A., Cocco, L., Evangelisti, C., Chiarini, F., & Martelli, A. M. (2012). Mutations and deregulation of Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/ mTOR cascades which alter therapy response. Oncotarget, 3(9), 954–987.

    PubMed Central  PubMed  Google Scholar 

  67. McCubrey, J. A., Steelman, L. S., Chappell, W. H., Abrams, S. L., Franklin, R. A., Montalto, G., Cervello, M., Libra, M., Candido, S., Malaponte, G., Mazzarino, M. C., Fagone, P., Nicoletti, F., Bäsecke, J., Mijatovic, S., Maksimovic-Ivanic, D., Milella, M., Tafuri, A., Chiarini, F., Evangelisti, C., Cocco, L., & Martelli, A. M. (2012). Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascade inhibitors: how mutations can result in therapy resistance and how to overcome resistance. Oncotarget, 3(10), 1068–1111.

    PubMed Central  PubMed  Google Scholar 

  68. Iida, M., Brand, T. M., Campbell, D. A., Starr, M. M., Luthar, N., Traynor, A. M., & Wheeler, D. L. (2013). Targeting AKT with the allosteric AKT inhibitor MK-2206 in non-small cell lung cancer cells with acquired resistance to cetuximab. Cancer Biology & Therapy, 14(6), 481–491.

    Article  CAS  Google Scholar 

  69. Holland, W. S., Chinn, D. C., Lara, P. N., Jr., Gandara, D. R., & Mack, P. C. (2015). Effects of AKT inhibition on HGF-mediated erlotinib resistance in non-small cell lung cancer cell lines. Journal of Cancer Research and Clinical Oncology, 141(4), 615–626.

    Article  CAS  PubMed  Google Scholar 

  70. Gadgeel, S. M., & Wozniak, A. (2013). Preclinical rationale for PI3K/Akt/mTOR pathway inhibitors as therapy for epidermal growth factor receptor inhibitor-resistant non-small-cell lung cancer. Clinical Lung Cancer, 14(4), 322–332.

    Article  CAS  PubMed  Google Scholar 

  71. Soria, J. C., Shepherd, F. A., Douillard, J. Y., Wolf, J., Giaccone, G., Crino, L., Cappuzzo, F., Sharma, S., Gross, S. H., Dimitrijevic, S., Di Scala, L., Gardner, H., Nogova, L., & Papadimitrakopoulou, V. (2009). Efficacy of everolimus (RAD001) in patients with advanced NSCLC previously treated with chemotherapy alone or with chemotherapy and EGFR inhibitors. Annals of Oncology, 20(10), 1674–1681.

    Article  PubMed  Google Scholar 

  72. Price, K. A., Azzoli, C. G., Krug, L. M., Pietanza, M. C., Rizvi, N. A., Pao, W., Kris, M. G., Riely, G. J., Heelan, R. T., Arcila, M. E., & Miller, V. A. (2010). Phase II trial of gefitinib and everolimus in advanced non-small cell lung cancer. Journal of Thoracic Oncology, 5(10), 1623–1629.

    Article  PubMed Central  PubMed  Google Scholar 

  73. Ramalingam, S. S., Owonikoko, T. K., Behera, M., Subramanian, J., Saba, N. F., Kono, S. A., Gal, A. A., Sica, G., Harvey, R. D., Chen, Z., Klass, C. M., Shin, D. M., Fu, H., Sun, S. Y., Govindan, R., & Khuri, F. R. (2013). Phase II study of docetaxel in combination with everolimus for second- or third-line therapy of advanced non-small-cell lung cancer. Journal of Thoracic Oncology, 8(3), 369–372.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Besse, B., Leighl, N., Bennouna, J., Papadimitrakopoulou, V. A., Blais, N., Traynor, A. M., Soria, J. C., Gogov, S., Miller, N., Jehl, V., & Johnson, B. E. (2014). Phase II study of everolimus-erlotinib in previously treated patients with advanced non-small-cell lung cancer. Annals of Oncology, 25(2), 409–415.

    Article  CAS  PubMed  Google Scholar 

  75. Hainsworth, J. D., Cebotaru, C. L., Kanarev, V., Ciuleanu, T. E., Damyanov, D., Stella, P., Ganchev, H., Pover, G., Morris, C., & Tzekova, V. (2010). A phase II, open-label, randomized study to assess the efficacy and safety of AZD6244 (ARRY-142886) versus pemetrexed in patients with non-small cell lung cancer who have failed one or two prior chemotherapeutic regimens. Journal of Thoracic Oncology, 5(10), 1630–1636.

    Article  PubMed  Google Scholar 

  76. Jänne, P. A., Shaw, A. T., Pereira, J. R., Jeannin, G., Vansteenkiste, J., Barrios, C., Franke, F. A., Grinsted, L., Zazulina, V., Smith, P., Smith, I., & Crinò, L. (2013). Selumetinib plus docetaxel for KRAS-mutant advanced non-small-cell lung cancer: a randomised, multicentre, placebo-controlled, phase 2 study. Lancet Oncology, 14(1), 38–47.

    Article  PubMed  Google Scholar 

  77. Infante, J. R., Papadopoulos, K. P., Bendell, J. C., Patnaik, A., Burris, H. A., Rasco, D., Jones, S. F., Smith, L., Cox, D. S., Durante, M., Bellew, K. M., Park, J. J., Le, N. T., & Tolcher, A. W. (2013). A phase 1b study of trametinib, an oral Mitogen-activated protein kinase kinase (MEK) inhibitor, in combination with gemcitabine in advanced solid tumours. European Journal of Cancer, 49(9), 2077–2085.

    Article  CAS  PubMed  Google Scholar 

  78. Blumenschein, G. R., Jr., Smit, E. F., Planchard, D., Kim, D. W., Cadranel, J., De Pas, T., Dunphy, F., Udud, K., Ahn, M. J., Hanna, N. H., Kim, J. H., Mazieres, J., Kim, S. W., Baas, P., Rappold, E., Redhu, S., Puski, A., Wu, F. S., & Jänne, P. A. (2015). A randomized phase II study of the MEK1/MEK2 inhibitor trametinib (GSK1120212) compared with docetaxel in KRAS-mutant advanced non-small-cell lung cancer (NSCLC)†. Annals of Oncology, 26(5), 894–901.

    Article  PubMed  Google Scholar 

  79. Zimmer, L., Barlesi, F., Martinez-Garcia, M., Dieras, V., Schellens, J. H., Spano, J. P., Middleton, M. R., Calvo, E., Paz-Ares, L., Larkin, J., Pacey, S., Venturi, M., Kraeber-Bodéré, F., Tessier, J. J., Eberhardt, W. E., Paques, M., Guarin, E., Meresse, V., & Soria, J. C. (2014). Phase I expansion and pharmacodynamic study of the oral MEK inhibitor RO4987655 (CH4987655) in selected patients with advanced cancer with RAS-RAF mutations. Clinical Cancer Research, 20(16), 4251–4261.

    Article  CAS  PubMed  Google Scholar 

  80. Honda, K., Yamamoto, N., Nokihara, H., Tamura, Y., Asahina, H., Yamada, Y., Suzuki, S., Yamazaki, N., Ogita, Y., & Tamura, T. (2013). Phase I and pharmacokinetic/pharmacodynamic study of RO5126766, a first-in-class dual Raf/MEK inhibitor, in Japanese patients with advanced solid tumors. Cancer Chemotherapy and Pharmacology, 72(3), 577–584.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by Zhongshan Distinguished Professor Grant (XDW), The National Nature Science Foundation of China (91230204, 81270099, 81320108001, 81270131, 81300010), The Shanghai Committee of Science and Technology (12JC1402200, 12431900207, 11410708600, 14431905100), Operation funding of Shanghai Institute of Clinical Bioinformatics, and Ministry of Education, Academic Special Science and Research Foundation for PhD Education (20130071110043).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-dong Wang.

Additional information

Ye Ling and Meiling Jing authors contribute to the article equally as the first authorship

Ye Ling and Meiling Jing contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ling, Y., Jing, M. & Wang, Xd. Allosteric therapies for lung cancer. Cancer Metastasis Rev 34, 303–312 (2015). https://doi.org/10.1007/s10555-015-9567-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-015-9567-z

Keywords

Navigation