Abstract
Breast cancer frequently metastasizes to bone, where it takes a significant toll on quality of life. Models of bone metastasis are needed in order to better understand the process of bone metastasis and to develop better treatments. Here, we discuss the available mouse models for breast cancer bone metastasis and critical techniques for imaging bone metastasis in these models.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
American Cancer Society. (2012). Cancer facts and figures 2012. Atlanta: American Cancer Society.
Colman, R. E. (2002). Future directions in the treatment and prevention of bone metastasis. American Journal of Clinical Oncology, 25, S32–S38.
Mundy, G. R. (2002). Metastasis to bone: causes, consequences and therapeutic opportunities. Nature Reviews Cancer, 2, 584–593.
Deil, I. J., Solomayer, E. F., & Bastert, G. (2000). Treatment of metastatic bone disease in breast cancer, bisphophonates. Clinical Breast Cancer, 1, 43–51.
Tsukamoto, A. S., Grosschedl, R., Guzman, R. C., et al. (1988). Expression of the int-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice. Cell, 55, 619–625.
Guy, C. T., Webster, M. A., Schaller, M., et al. (1992). Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proceedings of the National Academy of Sciences of the United States of America, 89, 10578–10582.
Bouchard, L., Lamarre, L., Tremblay, P. T., et al. (1989). Stochastic appearance of mammary tumors in transgenic mice carrying the MMTV/c-neu oncogene. Cell, 57, 931–936.
Muller, W. J., Sinn, E., Pattengale, P. K., et al. (1988). Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell, 54, 105–115.
Nielsen, L. L., Discafani, C. M., Gurnan, M., et al. (1991). Histopathology of salivary and mammary gland tumors in transgenic mice expressing a human Ha-ras oncogene. Cancer Research, 51, 3762–3767.
Sinn, E., Muller, W., Pattengale, P., et al. (1987). Coexpression of MMTV/v-Ha-ras and MMTV/c-myc genes in transgenic mice: synergistic action of oncogenes in vivo. Cell, 49, 465–475.
Goldstein, R. H., Weinberg, R. A., & Rosenblatt, M. (2010). Of mice and (wo)men: mouse models of breast cancer metastasis to bone. Journal of Bone and Mineral Research, 25, 431–436.
Guy, C. T., Cardiff, R. D., & Muller, W. J. (1992). Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Molecular and Cellular Biology, 12, 954–961.
Ichaso, N., & Dilworth, S. M. (2001). Cell transformation by the middle T-antigen of polyoma virus. Oncogene, 20, 7908–7916.
Lin, E. Y., Jones, J. G., Li, P., et al. (2003). Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases. American Journal of Pathology, 163, 2113–2126.
Fluck, M. M., & Haslam, S. Z. (1996). Mammary tumors induced by polyomavirus. Breast Cancer Research and Treatment, 39, 45–56.
Welm, A. L., Sneddon, J. B., Taylor, C., et al. (2007). The macrophage-stimulating protein pathway promotes metastasis in a mouse model for breast cancer and predicts poor prognosis in humans. Proceedings of the National Academy of Sciences of the United States of America, 104, 7570–7575.
Kang, Y., Siegel, P. M., Shu, W., et al. (2003). A multigenic program mediating breast cancer metastasis to bone. Cancer Cell, 3, 537–549.
Garcia, T., Jackson, A., Bachelier, R., et al. (2008). A convenient clinically relevant model of human breast cancer to bone metastasis. Clinical & Experimental Metastasis, 25, 33–42.
Tavazoie, S. F., Alarcon, C., Oskarsson, T., et al. (2008). Endogenous human microRNAs that suppress breast cancer metastasis. Nature, 451, 147–152.
Minn, A. J., Gupta, G. P., Siegel, P. M., et al. (2005). Genes that mediate breast cancer metastasis to lung. Nature, 436, 518–524.
Bos, P. D., Zhang, X. H., Nadal, C., et al. (2009). Genes that mediate breast cancer metastasis to brain. Nature, 459, 1005–1009.
Kakiuchi, S., Daigo, Y., Tsunoda, T., et al. (2003). Genome-wide analysis of organ-preferential metastasis of human small cell lung cancer in mice. Molecular Cancer Research, 1, 485–499.
Juarez, P., & Guise, T. A. (2011). TGF-β in cancer and bone: implications for treatment of bone metastasis. Bone, 48, 23–29.
Mundy, G. R., Yoneda, T., & Hiraga, T. (2001). Preclinical studies with zoledronic acid and other bisphosphonates: impact on the bone microenvironment. Seminars in Oncology, 28(2 Suppl 6), 35–44.
Canon, J. R., Roudier, M., Bryant, R., et al. (2008). Inhibition of RANKL blocks skeletal tumor progression and improves survival in a mouse model of breast cancer bone metastasis. Clinical & Experimental Metastasis, 25, 119–129.
Valastyan, S., & Weinberg, R. A. (2011). Tumor metastasis: molecular insights and evolving paradigms. Cell, 147, 275–292.
Lelekakis, M., Moseley, J. M., Martin, T. J., et al. (1999). A novel orthotopic model of breast cancer metastasis to bone. Clinical & Experimental Metastasis, 17, 163–170.
Miller, F. R., Miller, B. E., & Heppner, G. H. (1983). Characterization of metastatic heterogeneity among subpopulations of a single mouse mammary tumor:heterogeneity in phenotypic stability. Invasion and Metastasis, 3, 22–31.
DeNardo, D. G., & Coussens, L. M. (2007). Inflammation and breast cancer-balancing immune response: crosstalk between adaptive and innate immune cells during breast cancer progression. Breast Cancer Research, 9, 212.
Kuperwasser, C., Chavarria, T., Wu, M., et al. (2004). Reconstitution of functionally normal and malignant human breast tissues in mice. Proceedings of the National Academy of Sciences of the United States of America, 101, 4966–4972.
Kuperwasser, C., Dessain, S., Bierbaum, B. E., et al. (2005). A mouse model of human breast cancer metastasis to human bone. Cancer Research, 65, 6130–6138.
Moreau, J. E., Anderson, K., Mauney, J. R., et al. (2007). Tissue-engineered bone serves as a target for metastasis of human breast cancer in a mouse model. Cancer Research, 67, 10304–10308.
DeRose, Y. S., Wang, G., Lin, Y. C., et al. (2011). Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nature Medicine, 17, 1514–1520.
Weissleder, R., Tung, C. H., Mahmood, U., et al. (1999). In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nature Biotechnology, 17, 375–378.
Henriquez, N. V., van Overveld, P. G., Que, I., et al. (2007). Advances in optical imaging and novel systems for cancer metastasis research. Clinical & Experimental Metastasis, 24, 699–705.
Serganova, I., Moroz, E., Vider, J., et al. (2009). Multimodality imaging of TGFbeta signaling in breast cancer metastases. The FASEB Journal, 23, 2662–2672.
Korpal, M., Yan, J., Lu, X., et al. (2009). Imaging transforming growth factor-β signaling dynamics and therapeutic response in breast cancer bone metastasis. Nature Medicine, 15(8), 960–966.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kretschmann, K.L., Welm, A.L. Mouse models of breast cancer metastasis to bone. Cancer Metastasis Rev 31, 579–583 (2012). https://doi.org/10.1007/s10555-012-9378-4
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10555-012-9378-4