Skip to main content

Advertisement

Log in

The role of autocrine motility factor in tumor and tumor microenvironment

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Autocrine motility factor (AMF) is a tumor-secreted cytokine and is abundant at tumor sites, where it may affect the process of tumor growth and metastasis. AMF is a multifunctional protein capable of affecting cell migration, invasion, proliferation, and survival, and possesses phosphoglucose isomerase activity and can catalyze the step in glycolysis and gluconeogenesis. Here, we review the role of AMF and tumor environment on malignant processes. The outcome of metastasis depends on multiple interactions between tumor cells and homeostatic mechanisms, therefore elucidation of the tumor/host interactions in the tumor microenvironment is essential in the development of new prevention and treatment strategies. Such knowledge might provide clues to develop new future therapeutic approaches for human cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fidler, I. J., & Poste, G. (1985). The cellular heterogeneity of malignant neoplasms: implications for adjuvant chemotherapy. Seminars in Oncology, 12, 207–21.

    PubMed  CAS  Google Scholar 

  2. Schnipper, L. (1986). Clinical implications of tumor-cell heterogeneity. New England Journal of Medicine, 314, 1423–431

    Article  PubMed  CAS  Google Scholar 

  3. Liotta, L. A., Thorgeirsson, U. P., & Garbisa, S. (1982). Role of collagenases in tumor cell invasion. Cancer and Metastasis Reviews, 1, 277–88.

    PubMed  CAS  Google Scholar 

  4. Strauli, P., & Haemmerli, G. (1984). The role of cancer cell motility in invasion. Cancer and Metastasis Reviews, 3, 127–41.

    PubMed  CAS  Google Scholar 

  5. Woolley, D. E. (1984). Collagenolytic mechanisms in tumor cell invasion. Cancer and Metastasis Reviews, 3, 361–72.

    PubMed  CAS  Google Scholar 

  6. Erickson, C. A. (1990). Cell migration in the embryo and adult organism. Current Opinion in Cell Biology, 2, 67–4.

    PubMed  CAS  Google Scholar 

  7. Lauffenburger, D. A., & Horwitz, A. F. (1996) Cell migration: a physically integrated molecular process. Cell, 84, 359–69.

    PubMed  CAS  Google Scholar 

  8. Carr, I. (1983). Lymphatic metastasis. Cancer and Metastasis Reviews, 2, 307–17.

    PubMed  CAS  Google Scholar 

  9. Carr, J., Dreher, B., & Carr, I. (1983). Lymphatic metastasis; lymphangiochemotherapy of mammary cancer: ascitic form of rat mammary adenocarcinoma 13762. Clinical and Experimental Metastasis, 1, 29–8.

    PubMed  CAS  Google Scholar 

  10. Bouwens, L., Jacobs, R., Remels, L., & Wisse, E. (1988). Natural cytotoxicity of rat hepatic natural killer cells and macrophages against a syngeneic colon adenocarcinoma. Cancer Immunology and Immunotherapy, 27, 137–41.

    PubMed  CAS  Google Scholar 

  11. Weiss, L., Orr, F. W., & Honn, K. V. (1989). Interactions between cancer cells and the microvasculature: a rate-regulator for metastasis. Clinial and Experimental Metastasis, 7, 127–67.

    CAS  Google Scholar 

  12. Crissman, J. D., Hatfield, J., Schaldenbrand, M., Sloane, B. F., Honn, K.V. (1985). Arrest and extravasation of B16 amelanotic melanoma in murine lungs. A light and electron microscopic study. Laboratory Investigation, 53, 470–78.

    PubMed  CAS  Google Scholar 

  13. Folkman, J. (1995). Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature Medicine, 1, 27–0.

    PubMed  CAS  Google Scholar 

  14. Weidner, N. (1995). Intratumor microvessel density as a prognostic factor in cancer. American Journal of Pathology, 147, 9–9.

    PubMed  CAS  Google Scholar 

  15. Stoker, M., & Gherardi, E. (1991). Regulation of cell movement: the motogenic cytokines. Biochimica Et Biophysica Acta, 1072, 81–02.

    PubMed  CAS  Google Scholar 

  16. Lazar-Molnar, E., Hegyesi, H., Toth, S., & Falus, A. (2000). Autocrine and paracrine regulation by cytokines and growth factors in melanoma. Cytokine, 12, 547–54.

    PubMed  CAS  Google Scholar 

  17. Baggetto, L. G. (1997). Biochemical, genetic, and metabolic adaptations of tumor cells that express the typical multidrug-resistance phenotype. Reversion by new therapies. Journal of Bioenergetics and Biomembranes, 29, 401–13.

    PubMed  CAS  Google Scholar 

  18. Kerbel, R. S. (1990). Growth dominance of the metastatic cancer cell: cellular and molecular aspects. Advances in Cancer Research, 55, 87–32.

    PubMed  CAS  Google Scholar 

  19. Singh, R. K., Bucana, C. D., Gutman, M., Fan, D., Wilson, M. R., & Fidler, I. J. (1994). Organ site-dependent expression of basic fibroblast growth factor in human renal cell carcinoma cells. American Journal of Pathology, 145, 365–74.

    PubMed  CAS  Google Scholar 

  20. Liotta, L. A., & Kohn, E. C. (2001). The microenvironment of the tumour’host interface. Nature, 411, 375–79.

    PubMed  CAS  Google Scholar 

  21. Fidler, I. J. (2002). The organ microenvironment and cancer metastasis. Differentiation, 70, 498–05.

    PubMed  Google Scholar 

  22. Paget, S. (1889). The distribution of secondary growths in cancer of the breast. Lancet, 1, 571–73.

    Google Scholar 

  23. Fidler, I. J., Ellis, L. M. (2004). Neoplastic angiogenesis—not all blood vessels are created equal. New England Journal of Medicine, 351, 215–16.

    PubMed  CAS  Google Scholar 

  24. Liotta, L. A., Tryggvason, K., Garbisa, S., Hart, I., Foltz, C. M., & Shafie, S. (1980). Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature, 284, 67–8.

    PubMed  CAS  Google Scholar 

  25. Nakajima, M., Morikawa, K., Fabra, A., Bucana, C. D., & Fidler, I. J. (1990). Influence of organ environment on extracellular matrix degradative activity and metastasis of human colon carcinoma cells. Journal of the National Cancer Institute, 82, 1890–898.

    PubMed  CAS  Google Scholar 

  26. Gutman, M., Singh, R. K., Xie, K., Bucana, C. D., & Fidler, I. J. (1995). Regulation of interleukin-8 expression in human melanoma cells by the organ environment. Cancer Research, 55, 2470–475.

    PubMed  CAS  Google Scholar 

  27. Aaronson, S. A. (1991). Growth factors and cancer. Science, 254, 1146–153.

    PubMed  CAS  Google Scholar 

  28. McCormick, B. A., & Zetter, B. R. (1992). interactions in angiogenesis and metastasis. Pharmacology and Therapeutics, 53, 239–60.

    PubMed  CAS  Google Scholar 

  29. Rodeck, U., Melber, K., Kath, R., Menssen, H. D., Varello, M., Atkinson, B., et al. (1991). Constitutive expression of multiple growth factor genes by melanoma cells but not normal melanocytes. Journal of Investigative Dermatology, 97, 20–6.

    PubMed  CAS  Google Scholar 

  30. Nicolson, G. L. (1993). Cancer progression and growth: relationship of paracrine and autocrine growth mechanisms to organ preference of metastasis. Experimental Cell Research, 204, 171–80.

    PubMed  CAS  Google Scholar 

  31. Radinsky, R. (1993). Paracrine growth regulation of human colon carcinoma organ-specific metastasis. Cancer and Metastasis Reviews, 12, 345–61.

    PubMed  CAS  Google Scholar 

  32. Wilson, J., & Balkwill, F. (2002). The role of cytokines in the epithelial cancer microenvironment. Seminars in Cancer Biology, 12, 113–20.

    PubMed  CAS  Google Scholar 

  33. Liotta, L. A., Mandler, R., Murano, G., Katz, D. A., Gordon, R. K., Chiang, P. K., et al. (1986). Tumor cell autocrine motility factor. Proceedings of the National Academy of Sciences of the United States of America, 83, 3302–306.

    PubMed  CAS  Google Scholar 

  34. Liotta, L. A., Rao, C. N., & Barsky, S. H. (1983). Tumor invasion and the extracellular matrix. Laboratory Investigation, 49, 636–49.

    PubMed  CAS  Google Scholar 

  35. Turley, E. A. (1992). Molecular mechanisms of cell motility. Cancer and Metastasis Reviews, 11, 1–.

    PubMed  CAS  Google Scholar 

  36. Seiki, M. (2002). The cell surface: the stage for matrix metalloproteinase regulation of migration. Current Opinion in Cell Biology, 14, 624–32.

    PubMed  CAS  Google Scholar 

  37. Gomm, S. A., Keevil, B. G., Thatcher, N., Hasleton, P. S., & Swindell, R. S. (1988). The value of tumour markers in lung cancer. British Journal of Cancer, 58, 797–04.

    PubMed  CAS  Google Scholar 

  38. Baumann, M., Kappl, A., Lang, T., Brand, K., Siegfried, W., & Paterok, E. (1990). The diagnostic validity of the serum tumor marker phosphohexose isomerase (PHI) in patients with gastrointestinal, kidney, and breast cancer. Cancer Investigation, 8, 351–56.

    PubMed  CAS  Google Scholar 

  39. Filella, X., Molina, R., Jo, J., Mas, E., & Ballesta, A. M. (1991). Serum phosphohexose isomerase activities in patients with colorectal cancer. Tumour Biology, 12, 360–67.

    PubMed  CAS  Google Scholar 

  40. Tsutsumi, S., Hogan, V., Nabi, I. R., & Raz, A. (2003). Overexpression of the autocrine motility factor/phosphoglucose isomerase induces transformation and survival of NIH-3T3 fibroblasts. Cancer Research, 63, 242–49.

    PubMed  CAS  Google Scholar 

  41. Yanagawa, T., Watanabe, H., Takeuchi, T., Fujimoto, S., Kurihara, H., & Takagishi, K. (2004). Overexpression of autocrine motility factor in metastatic tumor cells: possible association with augmented expression of KIF3A and GDI-β. Laboratory Investigation, 84, 513–22.

    PubMed  CAS  Google Scholar 

  42. Watanabe, H., Takehana, K., Date, M., Shinozaki, T., & Raz, A. (1996). Tumor cell autocrine motility factor is the neuroleukin/phosphohexose isomerase polypeptide. Cancer Research, 56, 2960–963.

    PubMed  CAS  Google Scholar 

  43. Kim, J. W., & Dang, C. V. (2005). Multifaceted roles of glycolytic enzymes. Trends in Biochemical Sciences, 30, 142–50.

    PubMed  CAS  Google Scholar 

  44. Beutler, E., West, C., Britton, H. A., Harris, J., & Forman, L. (1997). Glucosephosphate isomerase (GPI) deficiency mutations associated with hereditary nonspherocytic hemolytic anemia (HNSHA). Blood, Cells, Molecules and Diseases, 23, 402–09.

    CAS  Google Scholar 

  45. Jeffery, C. J., Bahnson, B. J., Chien, W., Ringe, D., & Petsko, G. A. (2000). Crystal Structure of Rabbit Phosphoglucose Isomerase, A Glycolytic Enzyme that Moonlights as Neuroleukin, Autocrin Motility Factor, and Differentiation Mediator. Biochemistry, 39, 955–64.

    PubMed  CAS  Google Scholar 

  46. Ravindranath, Y., Paglia, D. E., Warrier, I., Valentine, W., Nakatani, M., & Brockway, R. A. (1987). Glucose phosphate isomerase deficiency as a cause of hydrops fetalis. New England Journal of Medicine, 316, 258–61.

    Article  PubMed  CAS  Google Scholar 

  47. Matsumoto, I., Staub, A., Benoist, C., & Mathis, D. (1999). Arthritis provoked by linked T and B cell recognition of a glycolytic enzyme. Science, 286, 1732–735.

    PubMed  CAS  Google Scholar 

  48. Funasaka, T., Haga, A., Raz, A., & Nagase, H. (2001). Tumor autocrine motility factor is an angiogenic factor that stimulates endothelial cell motility. Biochemical and Biophysical Research Communications, 285, 118–28.

    PubMed  CAS  Google Scholar 

  49. Dang, C. V., & Semenza, G. L. (1999) Oncogenic alterations of metabolism. Trends in Biochemical Sciences, 24, 68–2.

    PubMed  CAS  Google Scholar 

  50. Gurney, M. E., Apatoff, B. R., Spear, G. T., Baumel, M. J., Antel, J. P., Bania, M. B., et al. (1986). Neuroleukin: a lymphokine product of lectin-stimulated T cells. Science, 234, 574–81.

    PubMed  CAS  Google Scholar 

  51. Xu, W., Seiter, K., Feldman, E., Ahmed, T., & Chiao, J. W. (1996). The differentiation and maturation mediator for human myeloid leukemia cells shares homology with neuroleukin or phosphoglucose isomerase. Blood, 87, 4502–506.

    PubMed  CAS  Google Scholar 

  52. Yakirevich, E., & Naot, Y. (2000). Cloning of a glucose phosphate isomerase/neuroleukin-like sperm antigen involved in sperm agglutination. Biology of Reproduction, 62, 1016–023.

    PubMed  CAS  Google Scholar 

  53. Cao, M. J., Osatomi, K., Matsuda, R., Ohkubo, M., Hara, K., & Ishihara, T. (2000). Purification of a novel serine proteinase inhibitor from the skeletal muscle of white croaker (Argyrosomus argentatus). Biochemical and Biophysical Research Communications, 272, 485–89.

    PubMed  CAS  Google Scholar 

  54. Niinaka, Y., Paku, S., Haga, A., Watanabe, H., & Raz, A. (1998). Expression and secretion of neuroleukin/phosphohexose isomerase/maturation factor as autocrine motility factor by tumor cells. Cancer Research, 58, 2667–674.

    PubMed  CAS  Google Scholar 

  55. Silletti, S., Watanabe, H., Hogan, V., Nabi, I. R., & Raz, A. (1991). Purification of B16-F1 melanoma autocrine motility factor and its receptor. Cancer Research, 51, 3507–511.

    PubMed  CAS  Google Scholar 

  56. Shimizu, K., Tani, M., Watanabe, H., Nagamachi, Y., Niinaka, Y., Shiroishi, T., et al. (1999). The autocrine motility factor receptor gene encodes a novel type of seven transmembrane protein. FEBS Letters, 456, 295–00.

    PubMed  CAS  Google Scholar 

  57. Watanabe, H., Nabi, I. R., & Raz, A. (1991). The relationship between motility factor receptor internalization and the lung colonization capacity of murine melanoma cells. Cancer Research, 51, 2699–705.

    PubMed  CAS  Google Scholar 

  58. Kohn, E. C., Liotta, L. A., & Schiffmann, E. (1990). Autocrine motility factor stimulates a three-fold increase in inositol trisphosphate in human melanoma cells. Biochemical and Biophysical Research Communications, 166, 757–64.

    PubMed  CAS  Google Scholar 

  59. Silletti, S., Timar, J., Honn, K. V., & Raz, A. (1994). Autocrine motility factor induces differential 12-lipoxygenase expression and activity in high- and low-metastatic K1735 melanoma cell variants. Cancer Research, 54, 5752–756.

    PubMed  CAS  Google Scholar 

  60. Watanabe, H., Carmi, P., Hogan, V., Raz, T., Silletti, S., Nabi, I. R., et al. (1991). Purification of human tumor cell autocrine motility factor and molecular cloning of its receptor. Journal of Biological Chemistry, 266, 13442–3448.

    PubMed  CAS  Google Scholar 

  61. Ohta, Y., Minato, H., Tanaka, Y., Go, T., Oda, M., & Watanabe, Y. (2000). Autocrine motility factor receptor expression associates with tumor progression in thymoma. International Journal of Oncology, 17, 259–64.

    PubMed  CAS  Google Scholar 

  62. Takanami, I., Takeuchi, K., Watanabe, H., Yanagawa, T., Takagishi, K., & Raz, A. (2001). Significance of autocrine motility factor receptor gene expression as a prognostic factor in non-small-cell lung cancer. International Journal of Cancer, 95, 384–87.

    CAS  Google Scholar 

  63. Timar, J., Raso, E., Dome, B., Ladanyi, A., Banfalvi, T., Gilde, K., & Raz, A. (2002). Expression and function of the AMF receptor by human melanoma in experimental and clinical systems. Clinical and Experimental Metastasis, 19, 225–32.

    PubMed  CAS  Google Scholar 

  64. Nabi, I. R., Watanabe, H., & Raz, A. (1992). Autocrine motility factor and its receptor: role in cell locomotion and metastasis. Cancer and Metastasis Reviews, 11, 5–0.

    PubMed  CAS  Google Scholar 

  65. Silletti, S., & Raz, A. (1996). Regulation of autocrine motility factor receptor expression in tumor cell locomotion and metastasis. Current Topics in Microbiology and Immunology, 213, 137–69.

    PubMed  CAS  Google Scholar 

  66. Folkman, J., & Klagsbrun, M. (1987). Angiogenic factors. Science, 235, 442–47.

    PubMed  CAS  Google Scholar 

  67. Risau, W., Sariola, H., Zerwes, H. G., Sasse, J., Ekblom, P., Kemler, R., & Doetschman, T. (1988). Vasculogenesis and angiogenesis in embryonic-stem-cell-derived embryoid bodies. Development, 102, 471–78.

    PubMed  CAS  Google Scholar 

  68. Folkman, J., & Shing, Y. (1992). Angiogenesis. Journal of Biological Chemistry, 267, 10931–0934.

    PubMed  CAS  Google Scholar 

  69. Liekens, S., De Clercq, E., & Neyts, J. (2001) Angiogenesis: regulators and clinical applications. Biochemical Pharmacology, 61, 253–70.

    PubMed  CAS  Google Scholar 

  70. Zetter, B. R. (1998). Angiogenesis and tumor metastasis. Annual Review of Medicine, 49, 407–24.

    PubMed  CAS  Google Scholar 

  71. Weidner, N., Folkman, J., Pozza, F., Bevilacqua, P., Allred, E. N., Moore, D. H., et al. (1992). Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma. Journal of National Cancer Institute, 84, 1875–887.

    CAS  Google Scholar 

  72. Vermeulen, P. B., Gasparini, G., Fox, S. B., Colpaert, C., Marson, L. P., Gion, M., et al. (2002). Second international consensus on the methodology and criteria of evaluation of angiogenesis quantification in solid human tumours. European Journal of Cancer, 38, 1564–579.

    PubMed  CAS  Google Scholar 

  73. Hanahan, D., & Folkman, J. (1996). Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell, 86, 353–64.

    PubMed  CAS  Google Scholar 

  74. Passaniti, A., Taylor, R. M., Pili, R., Guo, Y., Long, P. V., Haney, J. A., et al. (1992). A simple, quantitative method for assessing angiogenesis and antiangiogenic agents using reconstituted basement membrane, heparin, and fibroblast growth factor. Laboratory Investigation, 67, 519–28.

    PubMed  CAS  Google Scholar 

  75. Shibuya, M. (1995). Role of VEGF-flt receptor system in normal and tumor angiogenesis. Advances in Cancer Research, 67, 281–16.

    PubMed  CAS  Google Scholar 

  76. Ferrara, N. (2002). VEGF and the quest for tumour angiogenesis factors. Nature Review Cancer, 2, 795–03.

    CAS  Google Scholar 

  77. Leibovich, S. J., Polverini, P. J., Shepard, H. M., Wiseman, D. M., Shively, V., & Nuseir N. (1987). Macrophage-induced angiogenesis is mediated by tumour necrosis factor-α. Nature, 329, 630–32.

    PubMed  CAS  Google Scholar 

  78. Frater-Schroder, M., Risau, W., Hallmann, R., Gautschi, P., & Bohlen, P. (1987). Tumor necrosis factor type α, a potent inhibitor of endothelial cell growth in vitro, is angiogenic in vivo. Proceedings of the National Academy of Sciences of the United States of America, 84, 5277–281.

    PubMed  CAS  Google Scholar 

  79. Roberts, A. B., Sporn, M. B., Assoian, R. K., Smith. J. M., Roche, N. S., Wakefield, L. M., et al. (1986). Transforming growth factor type β: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proceedings of the National Academy of Sciences of the United States of America, 83, 4167–171.

    PubMed  CAS  Google Scholar 

  80. Heimark, R. L., Twardzik, D. R., & Schwartz, S. M. (1986). Inhibition of endothelial regeneration by type-β transforming growth factor from platelets. Science, 233, 1078–080.

    PubMed  CAS  Google Scholar 

  81. Muller, G., Behrens, J., Nussbaumer, U., Bohlen, P., & Birchmeier, W. (1987). Inhibitory action of transforming growth factor β on endothelial cells. Proceedings of the National Academy of Sciences of the United States of America, 84, 5600–604.

    PubMed  CAS  Google Scholar 

  82. Pertovaara, L., Kaipainen, A., Mustonen, T., Orpana, A., Ferrara, N., Saksela, O., et al. (1994). Vascular endothelial growth factor is induced in response to transforming growth factor-β in fibroblastic and epithelial cells. Journal of Biological Chemistry, 269, 6271–274.

    PubMed  CAS  Google Scholar 

  83. Sunderkotter, C., Steinbrink, K., Goebeler, M., Bhardwaj, R., & Sorg, C. (1994). Macrophages and angiogenesis. Journal of Leukocyte Biology, 55, 410–22.

    PubMed  CAS  Google Scholar 

  84. Sankar, S., Mahooti-Brooks, N., Bensen, L., McCarthy, T. L., Centrella, M., & Madri, J. A. (1996). Modulation of transforming growth factor β receptor levels on microvascular endothelial cells during in vitro angiogenesis. Journal of Clinical Investigation, 97, 1436–446.

    PubMed  CAS  Google Scholar 

  85. May, L. T., Torcia, G., Cozzolino, F., Ray, A., Tatter, S. B., et al. (1989). Interleukin-6 gene expression in human endothelial cells: RNA start sites, multiple IL-6 proteins and inhibition of proliferation. Biochemical and Biophysical Research Communications, 159, 991–98.

    PubMed  CAS  Google Scholar 

  86. Senger, D. R., Galli, S. J., Dvorak, A. M., Perruzzi, C. A., Harvey, V. S., Dvorak, H. F. (1983). Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science, 219, 983–85.

    PubMed  CAS  Google Scholar 

  87. Connolly, D. T. (1991). Vascular permeability factor: a unique regulator of blood vessel function. Journal of Cellular Biochemistry, 47, 219–23.

    PubMed  CAS  Google Scholar 

  88. Nagy, J. A., Masse, E. M., Herzberg, K. T., Meyers, M. S., Yeo, K. T., Yeo, T. K., et al. (1995). Pathogenesis of ascites tumor growth: vascular permeability factor, vascular hyperpermeability, and ascites fluid accumulation. Cancer Research, 55, 360–68.

    PubMed  CAS  Google Scholar 

  89. de Vries, C., Escobedo, J. A., Ueno, H., Houck, K., Ferrara, N., & Williams, L. T. (1992). The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science, 255, 989–91.

    PubMed  Google Scholar 

  90. Millauer, B., Wizigmann-Voos, S., Schnurch, H., Martinez, R., Moller, N. P., Risau, W., et al. (1993). High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell, 72, 835–46.

    PubMed  CAS  Google Scholar 

  91. Plate, K. H., Breier, G., Weich, H. A., & Risau, W. (1992). Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature, 359, 845–48.

    PubMed  CAS  Google Scholar 

  92. Hatva, E., Kaipainen, A., Mentula, P., Jaaskelainen, J., Paetau, A., Haltia, M., et al. (1995). Expression of endothelial cell-specific receptor tyrosine kinases and growth factors in human brain tumors. American Journal of Pathology, 146, 368–78.

    PubMed  CAS  Google Scholar 

  93. Warren, R. S., Yuan, H., Matli, M. R., Gillett, N. A., & Ferrara, N. (1995). Regulation by vascular endothelial growth factor of human colon cancer tumorigenesis in a mouse model of experimental liver metastasis. Journal of Clinical Investigation, 95, 1789–797.

    PubMed  CAS  Google Scholar 

  94. Funasaka, T., Haga, A., Raz, A., & Nagase, H. (2002). Autocrine motility factor secreted by tumor cells upregulates vascular endothelial growth factor receptor (Flt-1) expression in endothelial cells. International Journal of Cancer, 101, 217–23.

    CAS  Google Scholar 

  95. Kanno, S., Oda, N., Abe, M., Terai, Y., Ito, M., Shitara, K., et al. (2000). Roles of two VEGF receptors, Flt-1 and KDR, in the signal transduction of VEGF effects in human vascular endothelial cells. Oncogene, 19, 2138–146.

    PubMed  CAS  Google Scholar 

  96. Soker, S., Kaefer, M., Johnson, M., Klagsbrun, M., Atala, A., & Freeman, M. R. (2001). Vascular endothelial growth factor-mediated autocrine stimulation of prostate tumor cells coincides with progression to a malignant phenotype. American Journal of Pathology, 159, 651–59.

    PubMed  CAS  Google Scholar 

  97. Barleon, B., Siemeister, G., Martiny-Baron, G., Weindel, K., Herzog, C., & Marme, D. (1997). Vascular endothelial growth factor up-regulates its receptor fms-like tyrosine kinase 1 (FLT-1) and a soluble variant of FLT-1 in human vascular endothelial cells. Cancer Research, 57, 5421–425.

    PubMed  CAS  Google Scholar 

  98. Semenza, G. L. (2000). HIF-1 and human disease: one highly involved factor. Genes and Development, 14, 1983–991.

    PubMed  CAS  Google Scholar 

  99. Harris, A. L. (2002). Hypoxia—a key regulatory factor in tumour growth. Nature Review Cancer, 2, 38–7.

    CAS  Google Scholar 

  100. Semenza, G. L. (2003). Targeting HIF-1 for cancer therapy. Nature Review Cancer 3, 721–32.

    CAS  Google Scholar 

  101. Wang, G. L., Jiang, B. H., Rue, E. A., & Semenza, G. L. (1995). Hypoxia-inducible factor 1 is a basic-helix’loop’helix’PAS heterodimer regulated by cellular O2 tension. Proceedings of the National Academy of Sciences of the United States of America, 92, 5510–514.

    PubMed  CAS  Google Scholar 

  102. Huang, L. E., Gu, J., Schau, M., & Bunn, H. F. (1998). Regulation of hypoxia-inducible factor 1α is mediated by an O2-dependent degradation domain via the ubiquitinproteasome pathway. Proceedings of the National Academy of Sciences of the United States of America, 95, 7987–992.

    PubMed  CAS  Google Scholar 

  103. Kallio, P. J., Wilson, W. J., O’Brien, S., Makino, Y., & Poellinger, L. (1999). Regulation of the hypoxia-inducible transcription factor 1α by the ubiquitin’proteasome pathway. Journal of Biological Chemistry, 274, 6519–525.

    PubMed  CAS  Google Scholar 

  104. Maxwell, P. H., Wiesener, M. S., Chang, G. W., Clifford, S. C., Vaux, E. C., Cockman, M. E., et al. (1999). The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature, 399, 271–75.

    PubMed  CAS  Google Scholar 

  105. Ivan, M., Kondo, K., Yang, H., Kim, W., Valiando, J., Ohh, M., et al. (2001). HIF-1α targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science, 292, 464–68.

    PubMed  CAS  Google Scholar 

  106. Jaakkola, P., Mole, D. R., Tian, Y. M., Wilson, M. I., Gielbert, J., Gaskell, S. J., et al. (2001). Targeting of HIF-1α to the von Hippel’Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science, 292, 468–72.

    PubMed  CAS  Google Scholar 

  107. Sivitz, W. I., Lund, D. D., Yorek, B., Grover-McKay, M., & Schmid, P. G. (1992). Pretranslational regulation of two cardiac glucose transporters in rats exposed to hypobaric hypoxia. American Journal of Physiology, 263, E562’E569.

    PubMed  CAS  Google Scholar 

  108. Semenza, G. L., Roth, P. H., Fang, H. M., & Wang, G. L. (1994). Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. Journal of Biological Chemistry, 269, 23757–3763.

    PubMed  CAS  Google Scholar 

  109. Daly, E. B., Wind, T., Jiang, X. M., Sun, L., & Hogg, P. J. (2004). Secretion of phosphoglycerate kinase from tumour cells is controlled by oxygen-sensing hydroxylases. Biochimica Et Biophysica Acta, 1691, 17–2.

    PubMed  CAS  Google Scholar 

  110. Yoon, D. Y., Buchler, P., Saarikoski, S. T., Hines, O. J., Reber, H. A., & Hankinson, O. (2001). Identification of genes differentially induced by hypoxia in pancreatic cancer cells. Biochemical and Biophysical Research Communications, 288, 882–86.

    PubMed  CAS  Google Scholar 

  111. Niizeki, H., Kobayashi, M., Horiuchi, I., Akakura, N., Chen, J., Wang, J., et al. (2002). Hypoxia enhances the expression of autocrine motility factor and the motility of human pancreatic cancer cells. British Journal of Cancer, 86, 1914–919.

    PubMed  CAS  Google Scholar 

  112. Krishnamachary, B., Berg-Dixon, S., Kelly, B., Agani, F., Feldser, D., Ferreira, G., et al. (2003). Regulation of colon carcinoma cell invasion by hypoxia-inducible factor 1. Cancer Research, 63, 1138–143.

    PubMed  CAS  Google Scholar 

  113. Funasaka, T., Yanagawa, T., Hogan, V., & Raz, A. (2005). Regulation of phosphoglucose isomerase/autocrine motility factor expression by hypoxia. FASEB Journal, 19, 1422–430.

    PubMed  CAS  Google Scholar 

  114. Shimizu, S., Eguchi, Y., Kamiike, W., Itoh, Y., Hasegawa, J., Yamabe, K., et al. (1996). Induction of apoptosis as well as necrosis by hypoxia and predominant prevention of apoptosis by Bcl-2 and Bcl-XL. Cancer Reseacrh, 56, 2161–166.

    CAS  Google Scholar 

  115. Koukourakis, M. I. (2001). Tumour angiogenesis and response to radiotherapy. Anticancer Research, 21, 4285–300.

    PubMed  CAS  Google Scholar 

  116. Yu, J. L., Rak, J. W., Coomber, B. L., Hicklin, D. J., & Kerbel, R. S. (2002). Effect of p53 status on tumor response to antiangiogenic therapy. Science, 295, 1526–528.

    PubMed  CAS  Google Scholar 

  117. Giatromanolaki, A., & Harris, A. L. (2001). Tumour hypoxia, hypoxia signaling pathways and hypoxia inducible factor expression in human cancer. Anticancer Research, 21, 4317–324.

    PubMed  CAS  Google Scholar 

  118. Han, B. H., & Holtzman, D. M. (2000). BDNF protects the neonatal brain from hypoxic’ischemic injury in vivo via the ERK pathway. Journal of Neuroscience, 20, 5775–781.

    PubMed  CAS  Google Scholar 

  119. Jin, K. L., Mao, X. O., & Greenberg, D. A. (2000). Vascular endothelial growth factor: direct neuroprotective effect in in vitro ischemia. Proceedings of the National Academy of Sciences of the United States of America, 97, 10242–0247.

    PubMed  CAS  Google Scholar 

  120. Haga, A., Funasaka, T., Niinaka, Y., Raz, A., & Nagase, H. (2003). Autocrine motility factor signaling induces tumor apoptotic resistance by regulations Apaf-1 and Caspase-9 apoptosome expression. International Journal of Cancer, 107, 707–14.

    CAS  Google Scholar 

  121. Romagnoli, A., Oliverio, S., Evangelisti, C., Iannicola, C., Ippolito, G., & Piacentini, M. (2003). Neuroleukin inhibition sensitises neuronal cells to caspase-dependent apoptosis. Biochemical and Biophysical Research Communications, 302, 448–53.

    PubMed  CAS  Google Scholar 

  122. Silletti, S., & Raz, A. (1993). Autocrine motility factor is a growth factor. Biochemical and Biophysical Research Communications, 194, 446–57.

    PubMed  CAS  Google Scholar 

  123. Tsutsumi, S., Yanagawa, T., Shimura, T., Fukumori, T., Hogan, V., Kuwano, H., et al. (2003). Regulation of cell proliferation by autocrine motility factor/phosphoglucose isomerase signaling. Journal of Biological and Chemistry, 278, 32165–2172.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avraham Raz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Funasaka, T., Raz, A. The role of autocrine motility factor in tumor and tumor microenvironment. Cancer Metastasis Rev 26, 725–735 (2007). https://doi.org/10.1007/s10555-007-9086-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-007-9086-7

Keywords

Navigation