Skip to main content

Advertisement

Log in

Obesity in pregnancy is a predictor of persistent subclinical myocardial dysfunction over postpartum period

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Purpose

No previous study provided a complete functional evaluation of all cardiac chambers in pregnant women with obesity. Moreover, the impact of cardiovascular changes associated with obesity in pregnancy on maternal outcome is unclear.

Methods

46 consecutive pregnant women with obesity, defined by body mass index (BMI) ≥ 30 Kg/m2, and 83 age- (35.5 ± 4.1 vs. 34.1 ± 5.1 yrs, p = 0.11), ethnicity- (caucasian 65.2 vs. 66.3%, p = 0.90) and gestational week-matched (36.3 ± 1.7 vs. 36.5 ± 1.5 wks, p = 0.49) pregnant women without obesity (BMI < 30 Kg/m2) were examined in the first trimester (12–14 weeks), third trimester (36–38 weeks) and 6–10 weeks postpartum. All women underwent obstetric visit, blood tests and transthoracic echocardiography implemented with two-dimensional speckle tracking echocardiography analysis of biventricular and biatrial myocardial deformation indices at the three time points. Outcome was persistent subclinical myocardial dysfunction, defined as an absolute value of left ventricular global longitudinal strain (LV-GLS) less negative than − 20%, in postpartum.

Results

Despite normal biventricular systolic function, all myocardial strain indices were significantly lower in pregnant women with obesity than controls. At 8.2 ± 2.2 weeks postpartum, LV-GLS remained less negative than − 20% in 86.9% of women with obesity in pregnancy. Maternal age (OR 1.68, 95%CI 1.14–2.48), third trimester BMI (OR 7.17, 95%CI 1.77–28.9) and third trimester neutrophil-to-lymphocyte ratio (NLR) (OR 1.75, 95%CI 1.22–2.51) were independently associated with outcome. Maternal age ≥ 35 years, BMI ≥ 30 Kg/m2 and NLR ≥ 5.5 were the optimal cut-off values for predicting persistent subclinical myocardial dysfunction in postpartum.

Conclusions

Pregnant women with obesity, age ≥ 35 yrs and low chronic inflammation have significantly increased risk of persistent subclinical myocardial dysfunction over postpartum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

2D:

two-dimensional

BMI:

body mass index

BSA:

body surface area

CI:

confidence interval

CO:

cardiac output

DBP:

diastolic blood pressure

EAT:

epicardial adipose tissue

GCS:

global circumferential strain

GLS:

global longitudinal strain

GRS:

global radial strain

GSA+:

positive global atrial strain

GSA-:

negative global atrial strain

ICC:

intraclass correlation coefficient

LA:

left atrial

LV:

left ventricular

LVEF:

left ventricular ejection fraction

LVMi:

left ventricular mass index

LVOT:

left ventricular outflow tract

MAP:

mean arterial pressure

MAPSE:

mitral annular plane systolic excursion

NLR:

neutrophil-to-lymphocyte ratio

RA:

right atrial

RDW:

red cell distribution width

ROC:

receiver operating characteristics

RV:

right ventricular

RWT:

relative wall thickness

SBP:

systolic blood pressure

SPAP:

systolic pulmonary artery pressure

STE:

speckle tracking echocardiography

SV:

stroke volume

TAPSE:

tricuspid annular plane systolic excursion

TGSA:

total global atrial strain

TPR:

total peripheral resistance

TTE:

transthoracic echocardiography

References

  1. Poston L, Caleyachetty R, Cnattingius S et al (2016) Preconceptional and maternal obesity: epidemiology and health consequences. Lancet Diabetes Endocrinol 4:1025–1036

    Article  PubMed  Google Scholar 

  2. Flegal KM, Carroll MD, Kit BK, Ogden CL (2012) Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999–2010. JAMA. J Am Med Assoc 307:491–497

    Article  Google Scholar 

  3. Simon A, Pratt M, Hutton B et al (2020) Guidelines for the management of pregnant women with obesity: A systematic review. Obes Rev 21:e12972

    Article  PubMed  PubMed Central  Google Scholar 

  4. Veille JC, Hanson R (1994) Obesity, pregnancy, and left ventricular function during the third trimester. Am J Obstet Gynecol 171:980–983

    Article  CAS  PubMed  Google Scholar 

  5. Abdullah A, Hoq S, Choudhary R, Laifer S, Zarich S (2012) Cardiac performance is impaired in morbidly obese pregnant females. J Obstet Gynaecol Res 38:258–265

    Article  PubMed  Google Scholar 

  6. Buddeberg BS, Fernandes NL, Vorster A et al (2019) Cardiac Structure and Function in Morbidly Obese Parturients: An Echocardiographic Study. Anesth Analg 129:444–449

    Article  PubMed  Google Scholar 

  7. Dennis AT, Castro JM, Ong M, Carr C (2012) Haemodynamics in obese pregnant women. Int J Obstet Anesth 21:129–134

    Article  CAS  PubMed  Google Scholar 

  8. Vinayagam D, Gutierrez J, Binder J, Mantovani E, Thilaganathan B, Khalil A (2017) Impaired maternal hemodynamics in morbidly obese women: a case–control study. Ultrasound Obstet Gynecol 50:761–765

    Article  CAS  PubMed  Google Scholar 

  9. Vinayagam D, Patey O, Thilaganathan B, Khalil A (2017) Cardiac output assessment in pregnancy: comparison of two automated monitors with echocardiography. Ultrasound Obstet Gynecol 49:32–38

    Article  CAS  PubMed  Google Scholar 

  10. Vonck S, Lanssens D, Staelens AS et al (2019) Obesity in pregnancy causes a volume overload in third trimester. Eur J Clin Invest 49:e13173

    Article  PubMed  Google Scholar 

  11. Marchi J, Berg M, Dencker A, Olander EK, Begley C (2015) Risks associated with obesity in pregnancy, for the mother and baby: a systematic review of reviews. Obes Rev 16:621–638

    Article  CAS  PubMed  Google Scholar 

  12. Indarti J, Susilo SA, Hyawicaksono P, Berguna JSN, Tyagitha GA, Ikhsan M (2021) Maternal and Perinatal Outcome of Maternal Obesity at RSCM in 2014–2019. Obstet Gynecol Int 2021:6039565

  13. Lee KK, Raja EA, Lee AJ et al (2015) Maternal Obesity During Pregnancy Associates With Premature Mortality and Major Cardiovascular Events in Later Life. Hypertension 66:938–934

    Article  CAS  PubMed  Google Scholar 

  14. Yaniv-Salem S, Shoham-Vardi I, Kessous R, Pariente G, Sergienko R, Sheiner E (2016) Obesity in pregnancy: what’s next? Long-term cardiovascular morbidity in a follow-up period of more than a decade. J Matern Fetal Neonatal Med 29:619–623

    Article  CAS  PubMed  Google Scholar 

  15. Sonaglioni A, Vincenti A, Baravelli M et al (2019) Prognostic value of global left atrial peak strain in patients with acute ischemic stroke and no evidence of atrial fibrillation. Int J Cardiovasc Imaging 35:603–613

    Article  PubMed  Google Scholar 

  16. Sonaglioni A, Caminati A, Lipsi R et al (2020) Early left atrial dysfunction in idiopathic pulmonary fibrosis patients without chronic right heart failure. Int J Cardiovasc Imaging 36:1711–1723

    Article  PubMed  Google Scholar 

  17. Sonaglioni A, Cara MD, Nicolosi GL et al (2021) Rapid Risk Stratification of Acute Ischemic Stroke Patients in the Emergency Department: The Incremental Prognostic Role of Left Atrial Reservoir Strain. J Stroke Cerebrovasc Dis 30:106100

    Article  PubMed  Google Scholar 

  18. Sonaglioni A, Nicolosi GL, Migliori C, Bianchi S, Lombardo M (2021) Usefulness of second trimester left ventricular global longitudinal strain for predicting adverse maternal outcome in pregnant women aged 35 years or older. Int J Cardiovasc Imaging doi: https://doi.org/10.1007/s10554-021-02485-9. Epub ahead of print. PMID: 34865191

  19. Buddeberg BS, Sharma R, O’Driscoll JM, Kaelin Agten A, Khalil A, Thilaganathan B (2019) Cardiac maladaptation in obese pregnant women at term. Ultrasound Obstet Gynecol 54:344–349

    Article  CAS  PubMed  Google Scholar 

  20. Apovian CM (2016) Obesity: definition, comorbidities, causes, and burden. Am J Manag Care 22:s176–s185

    PubMed  Google Scholar 

  21. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D (1999) A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med 130:461–470

    Article  CAS  PubMed  Google Scholar 

  22. Lang RM, Badano LP, Mor-Avi V et al (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 28:1–39

    Article  PubMed  Google Scholar 

  23. Nagueh SF, Smiseth OA, Appleton CP et al (2016) Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 29:277–314

    Article  PubMed  Google Scholar 

  24. Devereux RB, Alonso DR, Lutas EM et al (1986) Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol 57:450–458

    Article  CAS  PubMed  Google Scholar 

  25. Rudski LG, Lai WW, Afilalo J et al (2010) Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr 23:685–713

    Article  PubMed  Google Scholar 

  26. Iacobellis G, Willens HJ, Barbaro G, Sharma AM (2008) Threshold values of high-risk echocardiographic epicardial fat thickness. Obes (Silver Spring) 16:887–892

    Article  Google Scholar 

  27. Hill LK, Sollers Iii JJ, Thayer JF (2013) Resistance reconstructed estimation of total peripheral resistance from computationally derived cardiac output – biomed 2013. Biomed Sci Instrum 49:216–223

    PubMed  PubMed Central  Google Scholar 

  28. Muraru D, Onciul S, Peluso D et al (2016) Sex- and method-specific reference values for right ventricular strain by 2-dimensional speckle-tracking echocardiography. Circ Cardiovasc Imaging 9:e003866

    Article  PubMed  Google Scholar 

  29. Sonaglioni A, Lonati C, Lombardo M et al (2019) Incremental prognostic value of global left atrial peak strain in women with new-onset gestational hypertension. J Hypertens 37:1668–1675

    Article  CAS  PubMed  Google Scholar 

  30. Galderisi M, Cosyns B, Edvardsen T et al (2017) Standardization of adult transthoracic echocardiography reporting in agreement with recent chamber quantification, diastolic function, and heart valve disease recommendations: an expert consensus document of the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 18:1301–1310

    Article  PubMed  Google Scholar 

  31. Sugimoto T, Dulgheru R, Bernard A et al (2017) Echocardiographic reference ranges for normal left ventricular 2D strain: results from the EACVI NORRE study. Eur Heart J Cardiovasc Imaging 18:833–840

    Article  PubMed  Google Scholar 

  32. Yingchoncharoen T, Agarwal S, Popović ZB, Marwick TH (2013) Normal ranges of left ventricular strain: a meta-analysis. J Am Soc Echocardiogr 26:185–191

    Article  PubMed  Google Scholar 

  33. Wang TKM, Grimm RA, Rodriguez LL, Collier P, Griffin BP, Popović ZB (2021) Defining the reference range for right ventricular systolic strain by echocardiography in healthy subjects: A meta-analysis. PLoS ONE 16:e0256547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sugimoto T, Robinet S, Dulgheru R et al (2018) Echocardiographic reference ranges for normal left atrial function parameters: results from the EACVI NORRE study. Eur Heart J Cardiovasc Imaging 19:630–638

    Article  PubMed  Google Scholar 

  35. Badano LP, Kolias TJ, Muraru D et al (2018) Standardization of left atrial, right ventricular, and right atrial deformation imaging using two-dimensional speckle tracking echocardiography: a consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. Eur Heart J Cardiovasc Imaging 19:591–600

    Article  PubMed  Google Scholar 

  36. Pandey A, Patel KV, Vaduganathan M et al (2018) Physical Activity, Fitness, and Obesity in Heart Failure With Preserved Ejection Fraction. JACC Heart Fail 6:975–982

    Article  PubMed  Google Scholar 

  37. Hsiao SH, Lin KL, Chiou KR (2012) Comparison of left atrial volume parameters in detecting left ventricular diastolic dysfunction versus tissue Doppler recordings. Am J Cardiol 109:748–755

    Article  PubMed  Google Scholar 

  38. Morris DA, Belyavskiy E, Aravind-Kumar R et al (2018) Potential Usefulness and Clinical Relevance of Adding Left Atrial Strain to Left Atrial Volume Index in the Detection of Left Ventricular Diastolic Dysfunction. JACC Cardiovasc Imaging 11:1405–1415

    Article  PubMed  Google Scholar 

  39. Company Calabuig AM, Nunez E, Sánchez A, Nicolaides KH, Charakida M, De Paco Matallana C (2021) Three-dimensional echocardiography and cardiac strain imaging in women with gestational diabetes mellitus. Ultrasound Obstet Gynecol 58:278–284

    Article  CAS  PubMed  Google Scholar 

  40. Sonaglioni A, Barlocci E, Adda G et al (2022) The impact of short-term hyperglycemia and obesity on biventricular and biatrial myocardial function assessed by speckle tracking echocardiography in a population of women with gestational diabetes mellitus. Nutr Metab Cardiovasc Dis 32:456–468

    Article  CAS  PubMed  Google Scholar 

  41. Sonaglioni A, Esposito V, Caruso C et al (2021) Chest conformation spuriously influences strain parameters of myocardial contractile function in healthy pregnant women. J Cardiovasc Med (Hagerstown) 22:767–779

    Article  CAS  PubMed  Google Scholar 

  42. Mutluer FO, Bowen DJ, van Grootel RWJ, Roos-Hesselink JW, Van den Bosch AE (2021) Left ventricular strain values using 3D speckle-tracking echocardiography in healthy adults aged 20 to 72 years. Int J Cardiovasc Imaging 37:1189–1201

    Article  PubMed  Google Scholar 

  43. Lee HJ, Kim HL, Lim WH et al (2019) Subclinical alterations in left ventricular structure and function according to obesity and metabolic health status. PLoS ONE 14:e0222118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Frea S, Andreis A, Scarlatta V et al (2020) Subclinical Left Ventricular Dysfunction in Severe Obesity and Reverse Cardiac Remodeling after Bariatric Surgery. J Cardiovasc Echogr 30:22–28

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sonaglioni A, Esposito V, Caruso C et al (2020) Association between neutrophil to lymphocyte ratio and carotid artery wall thickness in healthy pregnant women. Eur J Obstet Gynecol Reprod Biol 255:98–104

    Article  PubMed  Google Scholar 

  46. Pinheiro RL, Areia AL, Mota Pinto A, Donato H (2019) Advanced Maternal Age: Adverse Outcomes of Pregnancy, A Meta-Analysis. Acta Med Port 32:219–226

    Article  PubMed  Google Scholar 

  47. Ferrazzi E, Brembilla G, Cipriani S, Livio S, Paganelli A, Parazzini F (2019) Maternal age and body mass index at term: Risk factors for requiring an induced labour for a late-term pregnancy. Eur J Obstet Gynecol Reprod Biol 233:151–157

    Article  PubMed  Google Scholar 

  48. Fryk E, Olausson J, Mossberg K et al (2021) Hyperinsulinemia and insulin resistance in the obese may develop as part of a homeostatic response to elevated free fatty acids: A mechanistic case-control and a population-based cohort study. EBioMedicine 65:103264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Melchiorre K, Sharma R, Khalil A, Thilaganathan B (2016) Maternal cardiovascular function in normal pregnancy: evidence of maladaptation to chronic volume overload. Hypertension 67:754–762

    Article  CAS  PubMed  Google Scholar 

  50. Carluccio E, Biagioli P, Lauciello R et al (2019) Superior prognostic value of right ventricular free wall compared to global longitudinal strain in patients with heart failure. J Am Soc Echocardiogr 32:836–844e1

    Article  PubMed  Google Scholar 

Download references

Funding

This work has been supported by Italian Ministry of Health Ricerca Corrente - IRCCS MultiMedica.

Author information

Authors and Affiliations

Authors

Contributions

Andrea Sonaglioni: Conceptualization; Data curation; Investigation; Methodology; Software; Visualization; Writing—original draft. Gian Luigi Nicolosi: Conceptualization; Data curation; Methodology; Writing—review & editing. Stefano Bianchi: Supervision; Validation; Writing—review & editing. Michele Lombardo: Supervision; Validation; Writing—review & editing.

Corresponding author

Correspondence to Andrea Sonaglioni M.D..

Ethics declarations

Conflict of interest

We wish to confirm that there are no conflicts of interest associated with this publication. Andrea Sonaglioni declares that he has no conflict of interest. Gian Luigi Nicolosi declares that he has no conflict of interest. Stefano Bianchi declares that he has no conflict of interest. Michele Lombardo declares that he has no conflict of interest.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sonaglioni, A., Nicolosi, G.L., Bianchi, S. et al. Obesity in pregnancy is a predictor of persistent subclinical myocardial dysfunction over postpartum period. Int J Cardiovasc Imaging 38, 1895–1907 (2022). https://doi.org/10.1007/s10554-022-02579-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-022-02579-y

Keywords

Navigation