Skip to main content

Advertisement

Log in

Deep-learning-based cardiac amyloidosis classification from early acquired pet images

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

The objective of the present work was to evaluate the potential of deep learning tools for characterizing the presence of cardiac amyloidosis from early acquired PET images, i.e. 15 min after [18F]-Florbetaben tracer injection. 47 subjects were included in the study: 13 patients with transthyretin-related amyloidosis cardiac amyloidosis (ATTR-CA), 15 patients with immunoglobulin light-chain amyloidosis (AL-CA), and 19 control-patients (CTRL). [18F]-Florbetaben PET/CT images were acquired in list mode and data was sorted into a sinogram, covering a time interval of 5 min starting 15 min after the injection. The resulting sinogram was reconstructed using OSEM iterative algorithm. A deep convolutional neural network (CAclassNet) was designed and implemented, consisting of five 2D convolutional layers, three fully connected layers and a final classifier returning AL, ATTR and CTRL scores. A total of 1107 2D images (375 from AL-subtype patients, 312 from ATTR-subtype, and 420 from Controls) have been considered in the study and used to train, validate and test the proposed network. CAclassNet cross-validation resulted with train error mean ± sd of 2.001% ± 0.96%, validation error of 4.5% ± 2.26%, and net accuracy of 95.49% ± 2.26%. Network test error resulted in a mean ± sd values of 10.73% ± 0.76%. Sensitivity, specificity, and accuracy evaluated on the test dataset were respectively for AL-CA sub-type: 1, 0.912, 0.936; for ATTR-CA: 0.935, 0.897, 0.972; for control subjects: 0.809, 0.971, 0.909. In conclusion, the proposed CAclassNet model seems very promising as an aid for the clinician in the diagnosis of CA from cardiac [18F]-Florbetaben PET images acquired a few minutes after the injection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Acquired PET images, duly anonymized, are made available to anyone interested. Custom code is available to anyone interested.

References

  1. Wechalekar AD, Gillmore JD, Hawkins PN (2016) Systemic amyloidosis. Lancet 387(10038):2641–2654. https://doi.org/10.1016/S0140-6736(15)01274-X

    Article  CAS  PubMed  Google Scholar 

  2. Sipe JD, Benson MD, Buxbaum JN et al (2016) Amyloid fibril proteins and amyloidosis: chemical identification and clinical classification International Society of Amyloidosis 2016 Nomenclature Guidelines. Amyloid 23(4):209–213. https://doi.org/10.1080/13506129.2016.1257986

    Article  CAS  PubMed  Google Scholar 

  3. Martinez-Naharro A, Hawkins PN, Fontana M (2018) Cardiac amyloidosis. Clin Med (Northfield Il) 18(Suppl 2):30–35. https://doi.org/10.7861/clinmedicine.18-2-s30

    Article  Google Scholar 

  4. Rosenzweig M, Landau H (2011) Light chain (AL) amyloidosis: update on diagnosis and management. J HematolOncol. https://doi.org/10.1186/1756-8722-4-47

    Article  Google Scholar 

  5. Ruberg FL, Grogan M, Hanna M, Kelly JW, Maurer MS (2019) Transthyretin amyloid cardiomyopathy: JACC state-of-the-art review. J Am CollCardiol 73(22):2872–2891. https://doi.org/10.1016/j.jacc.2019.04.003

    Article  CAS  Google Scholar 

  6. Gillmore JD, Wechalekar A, Bird J et al (2015) Guidelines on the diagnosis and investigation of AL amyloidosis. Br J Haematol 168(2):207–218. https://doi.org/10.1111/bjh.13156

    Article  CAS  PubMed  Google Scholar 

  7. Gillmore JD et al (2016) Nonbiopsy diagnosis of cardiac transthyretine amyloidosis. Circulation 133:2404–2412

    Article  CAS  Google Scholar 

  8. Mollee P, Renaut P, Gottlieb D, Goodman H (2014) How to diagnose amyloidosis. Intern Med J 44(1):7–17. https://doi.org/10.1111/imj.12288

    Article  CAS  PubMed  Google Scholar 

  9. Santarelli MF, Scipioni M, Genovesi D, Giorgetti A, Marzullo P, Landini L (2020) Imaging techniques as an aid in the early detection of cardiac amyloidosis. Curr Pharm Des. https://doi.org/10.2174/1381612826666200813133557

    Article  Google Scholar 

  10. Chacko L, Martone R, Cappelli F, Fontana M (2019) Cardiac amyloidosis: updates in imaging. CurrCardiol Rep 21(9):108. https://doi.org/10.1007/s11886-019-1180-2

    Article  Google Scholar 

  11. Lee S-P, Park J-B, Kim H-K, Kim Y-J, Grogan M, Sohn D-W (2019) Contemporary imaging diagnosis of cardiac amyloidosis. J Cardiovasc Imaging 27(1):1. https://doi.org/10.4250/jcvi.2019.27.e9

    Article  PubMed  PubMed Central  Google Scholar 

  12. Giorgetti A, Genovesi D, Emdin M (2018) Cardiac amyloidosis: the starched heart. J NuclCardiol. https://doi.org/10.1007/s12350-018-1399-0

    Article  Google Scholar 

  13. Slart RHJA, Glaudemans AWJM, Noordzij W, Bijzet J, Hazenberg BPC, Nienhuis HLA (2019) Time for new imaging and therapeutic approaches in cardiac amyloidosis. Eur J Nucl Med Mol Imaging 46(7):1402–1406. https://doi.org/10.1007/s00259-019-04325-4.GiorgettiA

    Article  PubMed  Google Scholar 

  14. Genovesi D, Milan E et al (2019) Cardiac amyloidosis. ClinTransl Imaging 7(1):21–32. https://doi.org/10.1007/s40336-018-00311-2

    Article  Google Scholar 

  15. Di Bella G, Pizzino F, Minutoli F et al (2014) The mosaic of the cardiac amyloidosis diagnosis: role of imaging insubtypes and stages of the disease. Eur Heart J Cardiovasc Imaging 15(12):1307–1315. https://doi.org/10.1093/ehjci/jeu158

    Article  PubMed  Google Scholar 

  16. Kyriakou P, Mouselimis D, Tsarouchas A, Rigopoulos A, Bakogiannis C, Noutsias M, Vassilikos V (2018) Diagnosis of cardiac amyloidosis: a systematic review on the role of imaging and biomarkers. BMC CardiovascDisord 18(1):221

    Article  CAS  Google Scholar 

  17. Bokhari S, Castano A, Pozniakoff T, Deslisle S, Latif F, Maurer MS (2013) (99m)Tc-pyrophosphate scintigraphy for differentiating light- chain cardiac amyloidosis from the transthyretin-related familial and senile cardiac amyloidoses. CircCardiovasc Imaging 6:195–201

    Article  Google Scholar 

  18. Perugini E, Guidalotti PL, Salvi F, Cooke RMT, Pettinato C, Riva L et al (2005) Noninvasive etiologic diagnosis of cardiac amyloidosis using 99mTc-3,3-diphosphono-1,2-propanodicarboxylic acid scintigraphy. J Am CollCardiol 46:1076–1084

    Article  Google Scholar 

  19. Santarelli MF, Genovesi D, Positano V, Di Sarlo R, Scipioni M, Giorgetti A, Landini L, Marzullo P (2020) Cardiac amyloidosis detection by early bisphosphonate (99mTc-HMDP) scintigraphy. J Nucl Cardiology. https://doi.org/10.1007/s12350-020-02239-5

    Article  Google Scholar 

  20. Andrikopoulou E, Bhambhvani P (2019) Nuclear imaging of cardiac amyloidosis. J NuclCardiol 26(2):505–508

    Google Scholar 

  21. Treglia G, Glaudemans AWJM, Bertagna F, Hazenberg BPC, Erba PA, Giubbini R et al (2018) Diagnostic accuracy of bone scintigraphy in the assessment of cardiac transthyretin-related amyloidosis: a bivariate meta-analysis. Eur J Nucl Med Mol Imaging 45(11):1945–1955

    Article  CAS  Google Scholar 

  22. Kim YJ, Ha S, Kim Y (2020) Cardiac amyloidosis imaging with amyloid positron emission tomography: a systematic review and meta-analysis. J NuclCardiol 27(1):123–132

    Google Scholar 

  23. Law WP, Wang WYS, Moore PT, Mollee PN, Ng ACT (2016) Cardiac amyloid imaging with 18F-florbetaben PET: a pilot study. J Nucl Med 57(11):1733–1739

    Article  CAS  Google Scholar 

  24. Genovesi D, Vergaro G, Emdin M, Giorgetti A, Marzullo P (2017) PET-CT evaluation of amyloid systemic involvement with [18F]-florbetaben in patient with proved cardiac amyloidosis: a case report. J NuclCardiol 24(6):2025–2029

    Google Scholar 

  25. Dorbala S, Vangala D, Semer J et al (2014) Imaging cardiac amyloidosis: a pilot study using 18F-florbetapir positron emission tomography. Eur J Nucl Med Mol Imaging 41(9):1652–1662

    Article  CAS  Google Scholar 

  26. Kircher M, Ihne S, Brumberg J et al (2019) Detection of cardiac amyloidosis with 18F-Florbetaben-PET/CT in comparison to echocardiography, cardiac MRI and DPD-scintigraphy. Eur J Nucl Med Mol Imaging 46(7):1407–1416

    Article  Google Scholar 

  27. Genovesi D, Vergaro G, Giorgetti A, Marzullo P, Scipioni M, Santarelli MF, Pucci A, Buda G, Volpi E, Emdin M (2020) [18F]-florbetaben PET/CT for differential diagnosis among cardiac immunoglobulin light chain, transthyretin amyloidosis, and mimicking conditions. J Am CollCardiolImg. https://doi.org/10.1016/j.jcmg.2020.05.031

    Article  Google Scholar 

  28. Latif J, Xiao C, Imran A, Tu S (2019) Medical imaging using machine learning and deep learning algorithms: a review. 2019 2 IntConfComput Math EngTechnoliCoMET. https://doi.org/10.1109/ICOMET.2019.8673502

    Article  Google Scholar 

  29. Yadav SS, Jadhav SM (2019) Deep convolutional neural network based medical image classification for disease diagnosis. J Big Data. https://doi.org/10.1186/s40537-019-0276-2

    Article  Google Scholar 

  30. Martin-Isla C, Campello VM, Izquierdo C et al (2020) Image-based cardiac diagnosis with machine learning: a review. Front Cardiovasc Med 7:1–19. https://doi.org/10.3389/fcvm.2020.00001

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhang J, Gajjala S, Agrawal P, Tison GH, Hallock LA, Beussink- Nelson L et al (2018) Fully automated echocardiogram interpretation in clinical practice: feasibility and diagnostic accuracy. Circulation 138:1623–1635. https://doi.org/10.1161/CIRCULATIONAHA.118.034338

    Article  PubMed  PubMed Central  Google Scholar 

  32. Betancur J, Hu LH, Commandeur F, Sharir T, Einstein AJ, Fish MB et al (2019) Deep learning analysis of upright-supine high-efficiency SPECT myocardial perfusion imaging for prediction of obstructive coronary artery disease: a multicenter study. J Nucl Med 60:664–670. https://doi.org/10.2967/jnumed.118.213538

    Article  PubMed  PubMed Central  Google Scholar 

  33. Choi H (2018) Deep learning in nuclear medicine and molecular imaging: current perspectives and future directions. Nucl Med Mol Imaging 52:109–118. https://doi.org/10.1007/s13139-017-0504-7

    Article  CAS  PubMed  Google Scholar 

  34. Kim J, Suh HY, Kim J, Suh HY, Ryoo HG et al (2019) Amyloid PET quantification via end-to-end training of a deep learning. Nucl Med Mol Imaging 53:340–348. https://doi.org/10.1007/s13139-019-00610-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Son HJ, Oh JS, Oh M et al (2020) The clinical feasibility of deep learning-based classification of amyloid PET images in visually equivocal cases. Eur J Nucl Med Mol Imaging 47:332–341. https://doi.org/10.1007/s00259-019-04595-y

    Article  CAS  PubMed  Google Scholar 

  36. Weiner MW, Veitch DP, Aisen PS, Beckett LA, Cairns NJ, Cedarbaum J et al (2020) Alzheimer′s disease neuroimaging initiative. Application of deep learning to predict standardized uptake value ratio and amyloid status on 18F-florbetapir PET using ADNI data. Am J Neuroradiol 41(6):980–986. https://doi.org/10.3174/ajnr.A6573

    Article  Google Scholar 

  37. Lecun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444. https://doi.org/10.1038/nature14539

    Article  CAS  PubMed  Google Scholar 

  38. Ker J, Wang L, Rao J, Lim T (2017) Deep learning applications in medical image analysis. IEEE Access. https://doi.org/10.1109/ACCESS.2017.2788044

    Article  Google Scholar 

  39. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res. 15:1929–1958

    Google Scholar 

  40. Stone M (1974) Cross-validatory choice and assessment of statistical predictions. J R Stat SocSer B. https://doi.org/10.1111/j.2517-6161.1974.tb00994.x

    Article  Google Scholar 

  41. Betancur J, Commandeur F, Motlagh M et al (2018) Deep learning for prediction of obstructive disease from fast myocardial perfusion SPECT: a multicenter study. JACC Cardiovasc Imaging 11(11):1654–1663. https://doi.org/10.1016/j.jcmg.2018.01.020

    Article  PubMed  PubMed Central  Google Scholar 

  42. Glaudemans AWJM, Slart RHJA, Zeebregts CJ et al (2009) Nuclear imaging in cardiac amyloidosis. Eur J Nucl Med Mol Imaging 36(4):702–714. https://doi.org/10.1007/s00259-008-1037-1

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Filomena Santarelli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study was approved by the institutional ethics committee and by the AIFA (Agenzia Italiana del Farmaco) committee. The study complied with the Declaration of Helsinki.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santarelli, M.F., Genovesi, D., Positano, V. et al. Deep-learning-based cardiac amyloidosis classification from early acquired pet images. Int J Cardiovasc Imaging 37, 2327–2335 (2021). https://doi.org/10.1007/s10554-021-02190-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-021-02190-7

Keywords

Navigation