Skip to main content

Advertisement

Log in

Usefulness of 3D-PISA as compared to guideline endorsed parameters for mitral regurgitation quantification

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

This study was intended to evaluate the diagnostic value of three dimensional proximal isovelocity surface area (3D PISA) derived effective regurgitant orifice area (EROA) and the accuracy of automatic 3D PISA detection in a population resembling clinical practice. Quantification of mitral regurgitation (MR) remains challenging and 3D PISA EROA is a novel diagnostic tool with promising results. However its’ usefulness compared to guideline endorsed parameters has not been shown. In 93 consecutive patients examined in routine practice conventional parameters and 3D-datasets for offline 3D PISA evaluation were recorded. EROA was determined from the largest (peak) PISA and also averaged over systole for meanEROA. Results of 3D PISA calculation were compared with a combination of expert grading by two examiners and two scores for MR grading. In receiver operator characteristic-analysis the meanEROA as determined by 3D PISA had the best diagnostic value (AUC = 0.907 CI 0.832–0.983) as compared to peakEROA (AUC 0.840 CI 0.739–0.941), vena contracta width (AUC 0.831 CI 0.745–0.918) and 2D PISA (AUC 0.747 CI 0.644–0.850). A meanEROA of 0.15 cm2 had a sensitivity of 88.2 % and a specificity of 81.4 % for distinguishing severe from non-severe MR. Semiautomatic 3D PISA detection correlated very well with manually corrected values (r = 0.955). Semiautomatic 3D PISA measurement is feasible in a clinical population and has better diagnostic value compared to 2D PISA. Calculation of mean EROA throughout systole further improves diagnostic value compared to conventional parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

2D:

Two dimensional

3D:

Three dimensional

AR:

Aortic regurgitation

AUC:

Area under the curve

BMI:

Body mass index

bpm:

Heatbeats per minute

CAD:

Coronary artery disease

CKD:

Chronic kidney disease

COPD:

Chronic obstructive pulmonary disease

E/E′:

Early mitral inflow velocity/early mitral annulus velocity

EDV:

Enddiastolic volume

EROA:

Effective regurgitation orifice area

ICC:

Intraclass correlation coefficient

LA:

Left atrium

LVEF:

Eleft ventricular jection fraction

MR:

Mitral regurgitation

NYHA:

New York Heart Association classification

PISA:

Proximal isovelocity surface area

PMR:

Primary mitral regurgitation

ROC:

Receiver operator characteristic

RVol:

Regurgitation volume

SD:

Standard deviation

SMR:

Secondary mitral regurgitation

sPAP:

Systolic pulmonary artery pressure

VC:

Vena contracta width

VCA:

Vena contracta area

References

  1. Bargiggia GS, Tronconi L, Sahn DJ, Recusani F, Raisaro A, De Servi S et al (1991) A new method for quantitation of mitral regurgitation based on color flow Doppler imaging of flow convergence proximal to regurgitant orifice. Circulation 84:1481–1489

    Article  CAS  PubMed  Google Scholar 

  2. Zoghbi WA, Enriquez-Sarano M, Foster E, Grayburn PA, Kraft CD, Levine RA et al (2003) Recommendations for evaluation of the severity of native valvular regurgitation with two-dimensional and Doppler echocardiography. J Am Soc Echocardiogr 16:777–802

    Article  PubMed  Google Scholar 

  3. Lancellotti P, Moura L, Pierard LA (2010) European Association of Echocardiography. European Association of Echocardiography recommendations for the assessment of valvular regurgitation. Part 2: mitral and tricuspid regurgitation (native valve disease). Eur J Echocardiogr 11:307–332

    Article  PubMed  Google Scholar 

  4. Vahanian A, Alfieri O, Andreotti F, Antunes MJ, Baron-Esquivias G, Baumgartner H et al (2012) Guidelines on the management of valvular heart disease (version 2012): the Joint Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J 33:2451–2496

    Article  PubMed  Google Scholar 

  5. Enriquez-Sarano M, Miller FAJ, Hayes SN, Bailey KR, Tajik AJ, Seward JB (1995) Effective mitral regurgitant orifice area: clinical use and pitfalls of the proximal isovelocity surface area method. J Am Coll Cardiol 25:703–709

    Article  CAS  PubMed  Google Scholar 

  6. Pu M, Vandervoort PM, Greenberg NL, Powell KA, Griffin BP, Thomas JD (1996) Impact of wall constraint on velocity distribution in proximal flow convergence zone. Implications for color Doppler quantification of mitral regurgitation. J Am Coll Cardiol 27:706–713

    Article  CAS  PubMed  Google Scholar 

  7. Iwakura K, Ito H, Kawano S, Okamura A, Kurotobi T, Date M et al (2006) Comparison of orifice area by transthoracic three-dimensional Doppler echocardiography versus proximal isovelocity surface area (PISA) method for assessment of mitral regurgitation. Am J Cardiol 97:1630–1637

    Article  PubMed  Google Scholar 

  8. Matsumura Y, Fukuda S, Tran H, Greenberg NL, Agler DA, Wada N et al (2008) Geometry of the proximal isovelocity surface area in mitral regurgitation by 3-dimensional color Doppler echocardiography: difference between functional mitral regurgitation and prolapse regurgitation. Am Heart J 155:231–238

    Article  PubMed  Google Scholar 

  9. Kahlert P, Plicht B, Schenk IM, Janosi RA, Erbel R, Buck T (2008) Direct assessment of size and shape of noncircular vena contracta area in functional versus organic mitral regurgitation using real-time three-dimensional echocardiography. J Am Soc Echocardiogr 21:912–921

    Article  PubMed  Google Scholar 

  10. Altiok E, Hamada S, van Hall S, Hanenberg M, Dohmen G, Almalla M et al (2011) Comparison of direct planimetry of mitral valve regurgitation orifice area by three-dimensional transesophageal echocardiography to effective regurgitant orifice area obtained by proximal flow convergence method and vena contracta area determined by color Doppler echocardiography. Am J Cardiol 107:452–458

    Article  PubMed  Google Scholar 

  11. Li X, Shiota T, Delabays A, Teien D, Zhou X, Sinclair B et al (1999) Flow convergence flow rates from 3-dimensional reconstruction of color Doppler flow maps for computing transvalvular regurgitant flows without geometric assumptions: an in vitro quantitative flow study. J Am Soc Echocardiogr 12:1035–1044

    Article  CAS  PubMed  Google Scholar 

  12. Yosefy C, Levine RA, Solis J, Vaturi M, Handschumacher MD, Hung J (2007) Proximal flow convergence region as assessed by real-time 3-dimensional echocardiography: challenging the hemispheric assumption. J Am Soc Echocardiogr 20:389–396

    Article  PubMed  Google Scholar 

  13. Little SH, Igo SR, Pirat B, McCulloch M, Hartley CJ, Nose Y et al (2007) In vitro validation of real-time three-dimensional color Doppler echocardiography for direct measurement of proximal isovelocity surface area in mitral regurgitation. Am J Cardiol 99:1440–1447

    Article  PubMed Central  PubMed  Google Scholar 

  14. Pirat B, Little SH, Igo SR, McCulloch M, Nose Y, Hartley CJ et al (2009) Direct measurement of proximal isovelocity surface area by real-time three-dimensional color Doppler for quantitation of aortic regurgitant volume: an in vitro validation. J Am Soc Echocardiogr 22:306–313

    Article  PubMed Central  PubMed  Google Scholar 

  15. Sitges M, Jones M, Shiota T, Qin JX, Tsujino H, Bauer F et al (2003) Real-time three-dimensional color Doppler evaluation of the flow convergence zone for quantification of mitral regurgitation: validation experimental animal study and initial clinical experience. J Am Soc Echocardiogr 16:38–45

    Article  PubMed  Google Scholar 

  16. Grady L, Datta S, Kutter O, Duong C, Wein W, Little SH et al (2011) Regurgitation quantification using 3D PISA in volume echocardiography. Med Image Comput Comput Assist Interv 14:512–519

    PubMed  Google Scholar 

  17. Cobey FC, McInnis JA, Gelfand BJ, Rapo MA, D’Ambra MN (2012) A method for automating 3-dimensional proximal isovelocity surface area measurement. J Cardiothorac Vasc Anesth 26:507–511

    Article  PubMed  Google Scholar 

  18. de Agustin JA, Marcos-Alberca P, Fernandez-Golfin C, Goncalves A, Feltes G, Nunez-Gil IJ et al (2012) Direct measurement of proximal isovelocity surface area by single-beat three-dimensional color Doppler echocardiography in mitral regurgitation: a validation study. J Am Soc Echocardiogr 25:815–823

    Article  PubMed  Google Scholar 

  19. Thavendiranathan P, Liu S, Datta S, Rajagopalan S, Ryan T, Igo SR et al (2013) Quantification of chronic functional mitral regurgitation by automated 3-d peak and integrated proximal isovelocity surface area and stroke volume techniques using real-time 3-D volume color Doppler echocardiography. In vitro and clinical validation. Circ Cardiovasc Imaging 6:125–133

    Article  PubMed  Google Scholar 

  20. Schwammenthal E, Chen C, Benning F, Block M, Breithardt G, Levine RA (1994) Dynamics of mitral regurgitant flow and orifice area. Physiologic application of the proximal flow convergence method: clinical data and experimental testing. Circulation 90:307–322

    Article  CAS  PubMed  Google Scholar 

  21. Buck T, Plicht B, Kahlert P, Schenk IM, Hunold P, Erbel R (2008) Effect of dynamic flow rate and orifice area on mitral regurgitant stroke volume quantification using the proximal isovelocity surface area method. J Am Coll Cardiol 52:767–778

    Article  PubMed  Google Scholar 

  22. Quinones MA, Douglas PS, Foster E, Gorcsan Jr, Lewis JF, Pearlman AS et al (2003) American College of Cardiology/American Heart Association clinical competence statement on echocardiography: a report of the American College of Cardiology/American Heart Association/American College of Physicians–American Society of Internal Medicine Task Force on Clinical Competence. Circulation 107:1068–1089

  23. Buck T, Plicht B (2006) Erbel R [Current recommendations on echocardiographic evaluation of the severity of mitral regurgitation: standardization and practical application using a scoring system]. Herz 31:30–37

    Article  PubMed  Google Scholar 

  24. Thomas L, Foster E, Hoffman JI, Schiller NB (1999) The Mitral Regurgitation Index: an echocardiographic guide to severity. J Am Coll Cardiol 33:2016–2022

    Article  CAS  PubMed  Google Scholar 

  25. Lancellotti P, Gerard PL, Pierard LA (2005) Long-term outcome of patients with heart failure and dynamic functional mitral regurgitation. Eur Heart J 26:1528–1532

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

No conflicts of interest were declared by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank P. Schmidt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 60 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmidt, F.P., Gniewosz, T., Jabs, A. et al. Usefulness of 3D-PISA as compared to guideline endorsed parameters for mitral regurgitation quantification. Int J Cardiovasc Imaging 30, 1501–1508 (2014). https://doi.org/10.1007/s10554-014-0496-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-014-0496-7

Keywords

Navigation