Skip to main content
Log in

Influence of percutaneous atrial septal defect closure on inter- and intra-ventricular mechanical dyssynchrony in adults: evaluation of strain pattern

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Previous studies using speckle-tracking echocardiography (STE) for quantifying the functions of the right and left ventricles (RV and LV, respectively) in the presence of percutaneous atrial septal defect (ASD) closure have focused on the peak systolic strain (PSS). This study investigated changes in the mechanical dyssynchrony of ventricular contraction before and after ASD closure, issues that have been little addressed in the literature. Thirty-one adults with ASD were studied using two-dimensional STE before and 24 h after ASD closure. Thirty-one healthy age- and sex-matched subjects were recruited as controls. Global and segmental PSS values from the longitudinal, circumferential, and radial directions were analyzed. The time to peak systolic strain (PSST) and the standard deviation of the time to peak strain (SDT) among segments in each direction were calculated, to investigate the inter- and intra-ventricular mechanical dyssynchrony in these patients and improvements after closure. Compared to the control group, patients with ASD had higher RV free-wall longitudinal systolic strain, with increased PSST and SDT. The SDT values of the LV longitudinal and circumferential strains were also increased. By 24 h after ASD closure, the RV free-wall longitudinal strain and its PSST and SDT had reverted to normal levels. The LV circumferential strain was increased, and its SDT was decreased. The contraction period of the RV and myocardial contraction dyssynchrony in the RV and LV were increased in ASD patients. The inter- and intra-ventricular mechanical utilities were improved after percutaneous closure of the ASD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Webb G, Gatzoulis MA (2006) Atrial septal defects in the adult: recent progress and overview. Circulation 114(15):1645–1653

    Article  PubMed  Google Scholar 

  2. Gatzoulis MA, Freeman MA, Siu SC, Webb GD, Harris L (1999) Atrial arrhythmia after surgical closure of atrial septal defects in adults. N Engl J Med 340(11):839–846

    Article  CAS  PubMed  Google Scholar 

  3. Attie F, Rosas M, Granados N, Zabal C, Buendia A, Calderon J (2001) Surgical treatment for secundum atrial septal defects in patients >40 years old. A randomized clinical trial. J Am Coll Cardiol 38(7):2035–2042

    Article  CAS  PubMed  Google Scholar 

  4. Haddad F, Hunt SA, Rosenthal DN, Murphy DJ (2008) Right ventricular function in cardiovascular disease, part I: anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation 117(11):1436–1448

    Article  PubMed  Google Scholar 

  5. Jategaonkar SR, Scholtz W, Butz T, Bogunovic N, Faber L, Horstkotte D (2009) Two-dimensional strain and strain rate imaging of the right ventricle in adult patients before and after percutaneous closure of atrial septal defects. Eur J Echocardiogr 10(4):499–502

    Article  PubMed  Google Scholar 

  6. Gao CH, Zhang H, Chen XJ (2010) The impacts of transcatheter occlusion for congenital atrial septal defect on left ventricular systolic synchronicity: a three-dimensional echocardiography study. Echocardiography 27(3):324–328

    Article  PubMed  Google Scholar 

  7. Rao PS, Lorch S (2010) Left ventricular function after percutaneous occlusion of atrial septal defects. Echocardiography 27(3):351–353

    Article  PubMed  Google Scholar 

  8. Monfredi O, Luckie M, Mirjafari H, Willard T, Buckley H, Griffiths L, Clarke B, Mahadevan VS (2012) Percutaneous device closure of atrial septal defect results in very early and sustained changes of right and left heart function. Int J Cardiol

  9. Burgstahler C, Wohrle J, Kochs M, Nusser T, Loffler C, Kunze M, Hoher M, Gawaz MP, Hombach V, Merkle N (2007) Magnetic resonance imaging to assess acute changes in atrial and ventricular parameters after transcatheter closure of atrial septal defects. J Magn Reson Imaging 25(6):1136–1140

    Article  PubMed  Google Scholar 

  10. Vitarelli A, Sardella G, Roma AD, Capotosto L, De Curtis G, D’Orazio S, Cicconetti P, Battaglia D, Caranci F, De Maio M, Bruno P, Vitarelli M, De Chiara S, D’Ascanio M (2012) Assessment of right ventricular function by three-dimensional echocardiography and myocardial strain imaging in adult atrial septal defect before and after percutaneous closure. Int J Cardiovasc Imaging 28(8):1905–1916

    Article  PubMed  Google Scholar 

  11. Bussadori C, Oliveira P, Arcidiacono C, Saracino A, Nicolosi E, Negura D, Piazza L, Micheletti A, Chessa M, Butera G, Dua JS, Carminati M (2011) Right and left ventricular strain and strain rate in young adults before and after percutaneous atrial septal defect closure. Echocardiography 28(7):730–737

    Article  PubMed  Google Scholar 

  12. Murata T, Dohi K, Onishi K, Sugiura E, Fujimoto N, Ichikawa K, Ishikawa E, Nakamura M, Nomura S, Takeuchi H, Nobori T, Ito M (2011) Role of haemodialytic therapy on left ventricular mechanical dyssynchrony in patients with end-stage renal disease quantified by speckle-tracking strain imaging. Nephrol Dial Transpl 26(5):1655–1661

    Article  Google Scholar 

  13. Tanaka H, Tanabe M, Simon MA, Starling RC, Markham D, Thohan V, Mather P, McNamara DM, Gorcsan J III (2011) Left ventricular mechanical dyssynchrony in acute onset cardiomyopathy: association of its resolution with improvements in ventricular function. JACC Cardiovasc Imaging 4(5):445–456

    Article  PubMed  Google Scholar 

  14. Brili S, Stamatopoulos I, Misailidou M, Chrysohoou C, Tousoulis D, Tatsis I, Stefanadis C (2012) Longitudinal strain curves in the RV free wall differ in morphology in patients with pulmonary hypertension compared to controls. Int J Cardiol

  15. Sugiura E, Dohi K, Onishi K, Takamura T, Tsuji A, Ota S, Yamada N, Nakamura M, Nobori T, Ito M (2009) Reversible right ventricular regional non-uniformity quantified by speckle-tracking strain imaging in patients with acute pulmonary thromboembolism. J Am Soc Echocardiogr 22(12):1353–1359

    Article  PubMed  Google Scholar 

  16. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise JS, Solomon SD, Spencer KT, Sutton MS, Stewart WJ, Grp CQW (2005) Recommendations for chamber quantification: a report from the American Society of Echocardiography’s guidelines and standards committee and the chamber quantification writing group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 18(12):1440–1463

    Article  PubMed  Google Scholar 

  17. Galie N, Hoeper MM, Humbert M, Torbicki A, Vachiery JL, Barbera JA, Beghetti M, Corris P, Gaine S, Gibbs JS, Gomez-Sanchez MA, Jondeau G, Klepetko W, Opitz C, Peacock A, Rubin L, Zellweger M, Simonneau G, Guidelines ESCCfP (2009) Guidelines for the diagnosis and treatment of pulmonary hypertension: the task force for the diagnosis and treatment of pulmonary hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT). Eur Heart J 30(20):2493–2537

    Article  PubMed  Google Scholar 

  18. McQuillan BM, Picard MH, Leavitt M, Weyman AE (2001) Clinical correlates and reference intervals for pulmonary artery systolic pressure among echocardiographically normal subjects. Circulation 104(23):2797–2802

    Article  CAS  PubMed  Google Scholar 

  19. Sanders SP, Yeager S, Williams RG (1983) Measurement of systemic and pulmonary blood flow and QP/QS ratio using Doppler and two-dimensional echocardiography. Am J Cardiol 51(6):952–956

    Article  CAS  PubMed  Google Scholar 

  20. Pascotto M, Caso P, Santoro G, Caso I, Cerrato F, Pisacane C, D’Andrea A, Severino S, Russo MG, Calabro R (2004) Analysis of right ventricular Doppler tissue imaging and load dependence in patients undergoing percutaneous closure of atrial septal defect. Am J Cardiol 94(9):1202–1205

    Article  PubMed  Google Scholar 

  21. Puwanant S, Park M, Popovic ZB, Tang WH, Farha S, George D, Sharp J, Puntawangkoon J, Loyd JE, Erzurum SC, Thomas JD (2010) Ventricular geometry, strain, and rotational mechanics in pulmonary hypertension. Circulation 121(2):259–266

    Article  PubMed Central  PubMed  Google Scholar 

  22. Kobayashi D, Patel SR, Mattoo TK, Valentini RP, Aggarwal S (2012) The impact of change in volume and left-ventricular hypertrophy on left-ventricular mechanical dyssynchrony in children with end-stage renal disease. Pediatr Cardiol 33(7):1124–1130

    Article  PubMed  Google Scholar 

  23. Ichikawa K, Dohi K, Sugiura E, Sugimoto T, Takamura T, Ogihara Y, Nakajima H, Onishi K, Yamada N, Nakamura M, Nobori T, Ito M (2013) Ventricular function and dyssynchrony quantified by speckle-tracking echocardiography in patients with acute and chronic right ventricular pressure overload. J Am Soc Echocardiogr 26(5):483–492

    Article  PubMed  Google Scholar 

  24. Conca C, Faletra FF, Miyazaki C, Oh J, Mantovani A, Klersy C, Sorgente A, Pedrazzini GB, Pasotti E, Moccetti T, Auricchio A (2009) Echocardiographic parameters of mechanical synchrony in healthy individuals. Am J Cardiol 103(1):136–142

    Article  PubMed  Google Scholar 

  25. Brili S, Stamatopoulos I, Misailidou M, Chrysohoou C, Tousoulis D, Tatsis I, Stefanadis C (2013) Longitudinal strain curves in the RV free wall differ in morphology in patients with pulmonary hypertension compared to controls. Int J Cardiol 167(6):2753–2756

    Article  PubMed  Google Scholar 

  26. Imanishi J, Tanaka H, Matsumoto K, Tatsumi K, Miyoshi T, Hiraishi M, Kaneko A, Ryo K, Fukuda Y, Yoshida A, Yokoyama M, Kawai H, Hirata K (2012) Utility of combined assessment of baseline dyssynchrony and its acute improvement to predict long-term outcomes after cardiac resynchronization therapy. Am J Cardiol 110(12):1814–1819

    Article  PubMed  Google Scholar 

  27. Delgado V, van Bommel RJ, Bertini M, Borleffs CJ, Marsan NA, Arnold CT, Nucifora G, van de Veire NR, Ypenburg C, Boersma E, Holman ER, Schalij MJ, Bax JJ (2011) Relative merits of left ventricular dyssynchrony, left ventricular lead position, and myocardial scar to predict long-term survival of ischemic heart failure patients undergoing cardiac resynchronization therapy. Circulation 123(1):70–78

    Article  PubMed  Google Scholar 

  28. Lim P, Buakhamsri A, Popovic ZB, Greenberg NL, Patel D, Thomas JD, Grimm RA (2008) Longitudinal strain delay index by speckle tracking imaging: a new marker of response to cardiac resynchronization therapy. Circulation 118(11):1130–1137

    Article  PubMed  Google Scholar 

  29. Zhang Q, van Bommel RJ, Chan YS, Delgado V, Liang Y, Schalij MJ, Bax JJ, Fang F, Wai-Kwok Yip G, Yu CM (2011) Diverse patterns of longitudinal and radial dyssynchrony in patients with advanced systolic heart failure. Heart 97(7):574–578

    Article  PubMed  Google Scholar 

  30. Donal E, Tournoux F, Leclercq C, De Place C, Solnon A, Derumeaux G, Mabo P, Cohen-Solal A, Daubert JC (2008) Assessment of longitudinal and radial ventricular dyssynchrony in ischemic and nonischemic chronic systolic heart failure: a two-dimensional echocardiographic speckle-tracking strain study. J Am Soc Echocardiogr 21(1):58–65

    Article  PubMed  Google Scholar 

  31. Teske AJ, De Boeck BW, Olimulder M, Prakken NH, Doevendans PA, Cramer MJ (2008) Echocardiographic assessment of regional right ventricular function: a head-to-head comparison between 2-dimensional and tissue Doppler-derived strain analysis. J Am Soc Echocardiogr 21(3):275–283

    Article  PubMed  Google Scholar 

  32. Hui W, Slorach C, Bradley TJ, Jaeggi ET, Mertens L, Friedberg MK (2010) Measurement of right ventricular mechanical synchrony in children using tissue Doppler velocity and two-dimensional strain imaging. J Am Soc Echocardiogr 23(12):1289–1296

    Article  PubMed  Google Scholar 

  33. Marcus JT, Gan CT, Zwanenburg JJ, Boonstra A, Allaart CP, Gotte MJ, Vonk-Noordegraaf A (2008) Interventricular mechanical asynchrony in pulmonary arterial hypertension: left-to-right delay in peak shortening is related to right ventricular overload and left ventricular underfilling. J Am Coll Cardiol 51(7):750–757

    Article  PubMed  Google Scholar 

  34. van Heuningen R, Rijnsburger WH, ter Keurs HE (1982) Sarcomere length control in striated muscle. Am J Physiol 242(3):H411–H420

    PubMed  Google Scholar 

  35. Takamura T, Dohi K, Onishi K, Sakurai Y, Ichikawa K, Tsuji A, Ota S, Tanabe M, Yamada N, Nakamura M, Nobori T, Ito M (2011) Reversible left ventricular regional non-uniformity quantified by speckle-tracking displacement and strain imaging in patients with acute pulmonary embolism. J Am Soc Echocardiogr 24(7):792–802

    Article  PubMed  Google Scholar 

  36. Park HE, Chang SA, Kim HK, Shin DH, Kim JH, Seo MK, Kim YJ, Cho GY, Sohn DW, Oh BH, Park YB (2010) Impact of loading condition on the 2D speckle tracking-derived left ventricular dyssynchrony index in nonischemic dilated cardiomyopathy. Circ Cardiovasc Imaging 3(3):272–281

    Article  PubMed  Google Scholar 

  37. Bernard A, Donal E, Leclercq C, Ollivier R, Schnell F, de Place C, Daubert JC, Mabo P (2011) Impact of right ventricular contractility on left ventricular dyssynchrony in patients with chronic systolic heart failure. Int J Cardiol 148(3):289–294

    Article  PubMed  Google Scholar 

  38. Suffoletto MS, Dohi K, Cannesson M, Saba S, Gorcsan J III (2006) Novel speckle-tracking radial strain from routine black-and-white echocardiographic images to quantify dyssynchrony and predict response to cardiac resynchronization therapy. Circulation 113(7):960–968

    Article  PubMed  Google Scholar 

  39. Dohi K, Onishi K, Gorcsan J 3rd, Lopez-Candales A, Takamura T, Ota S, Yamada N, Ito M (2008) Role of radial strain and displacement imaging to quantify wall motion dyssynchrony in patients with left ventricular mechanical dyssynchrony and chronic right ventricular pressure overload. Am J Cardiol 101(8):1206–1212

    Article  PubMed  Google Scholar 

  40. Aburawi EH, Pesonen E (2011) Pathophysiology of coronary blood flow in congenital heart disease. Int J Cardiol 151(3):273–277

    Article  PubMed  Google Scholar 

  41. Sugimoto M, Ota K, Kajihama A, Nakau K, Manabe H, Kajino H (2011) Volume overload and pressure overload due to left-to-right shunt-induced myocardial injury—evaluation using a highly sensitive cardiac troponin-I assay in children with congenital heart disease. Circ J 75(9):2213–2219

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiu-Zhang Lu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, QZ., Liang, Y., Zhu, ZH. et al. Influence of percutaneous atrial septal defect closure on inter- and intra-ventricular mechanical dyssynchrony in adults: evaluation of strain pattern. Int J Cardiovasc Imaging 30, 721–727 (2014). https://doi.org/10.1007/s10554-014-0385-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-014-0385-0

Keywords

Navigation