Skip to main content
Log in

The effect of calcium score on the diagnostic accuracy of coronary computed tomography angiography

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

The influence of coronary calcification on the diagnostic performance of coronary computed tomography angiography (CTA) remains controversial. This study attempts to assess the effect of coronary calcium score (CS) on the diagnostic accuracy of detecting coronary artery disease (CAD) using 64-row multidetector computed tomography (MDCT). Over a period of 2 years and 9 months, 113 symptomatic patients (37–87 year-old, mean 62.3, 92 males) underwent 64-row MDCT for coronary CS and CTA. All had conventional coronary angiography (CCA) within 90 (mean 9.6) days. Coronary CTA was evaluated with CCA as the gold standard. Of 113 patients, 18 patients had a CS of 0, 18 had scores between 1 and 100, 27 between 101 and 400, and 50 had scores >400. With respect to patient-based analysis, the accuracy of CTA was 90.3%, the sensitivity was 95%, and the specificity was 78.8%. Regarding patients with CS > 400, the accuracy, sensitivity, and specificity were 92, 95.6, and 60%, respectively. On vessel-based analysis, the specificity of CTA in different vessels with CS ≦ 400 and CS > 400 was as follows: right coronary artery 87.1% versus 87.5% (P = 0.924); left main artery 94.8% versus 66.7% (P = 0.173); left anterior descending artery 77.1% versus 27.3% (P = 0.001); and left circumflex artery 83.3% versus 42.8% (P = 0.011). A high CS does not significantly affect the diagnostic accuracy and sensitivity of CTA; however, it significantly decreases the specificity, particularly the left anterior descending and left circumflex arteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Greenland P, LaBree L, Azen SP et al (2004) Coronary artery calcium score combined with Framingham score for risk prediction in asymptomatic individuals. JAMA 291(2):210–215

    Article  PubMed  CAS  Google Scholar 

  2. Kuettner A, Kopp AF, Schroeder S et al (2004) Diagnostic accuracy of multidetector computed tomography coronary angiography in patients with angiographically proven coronary artery disease. J Am Coll Cardiol 43(5):831–839

    Article  PubMed  Google Scholar 

  3. Bayrak F, Guneysu T, Gemici G et al (2008) Diagnostic performance of 64-slice computed tomography coronary angiography to detect significant coronary artery stenosis. Acta Cardiol 63(1):11–17

    Article  PubMed  Google Scholar 

  4. Budoff MJ, Dowe D, Jollis JG et al (2008) Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol 52(21):1724–1732

    Article  PubMed  Google Scholar 

  5. Hamon M, Morello R, Riddell JW (2007) Coronary arteries: diagnostic performance of 16- versus 64-section spiral CT compared with invasive coronary angiography–meta-analysis. Radiology 245(3):720–731

    Article  PubMed  Google Scholar 

  6. Miller JM, Rochitte CE, Dewey M et al (2008) Diagnostic performance of coronary angiography by 64-row CT. N Eng J Med 359(22):2324–2336

    Article  CAS  Google Scholar 

  7. Raff GL, Gallagher MJ, O’Neill WW et al (2005) Diagnostic accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography. J Am Coll Cardiol 46(3):552–557

    Article  PubMed  Google Scholar 

  8. Ropers D, Pohle FK, Kuettner A et al (2006) Diagnostic accuracy of noninvasive coronary angiography in patients after bypass surgery using 64-slice spiral computed tomography with 330-ms gantry rotation. Circulation 114(22):2334–2341

    Article  PubMed  Google Scholar 

  9. Schuijf JD, Mollet NR, Cademartiri F et al (2006) Do risk factors influence the diagnostic accuracy of noninvasive coronary angiography with multislice computed tomography? J Nuc Cardiol 13(5):635–641

    Article  Google Scholar 

  10. Palumbo AA, Maffei E, Martini C et al (2009) Coronary calcium score as gatekeeper for 64-slice computed tomography coronary angiography in patients with chest pain: per-segment and per-patient analysis. Eur Radiol 19(9):2127–2135

    Article  PubMed  Google Scholar 

  11. Ong TK, Chin SP, Liew CK et al (2006) Accuracy of 64-row multidetector computed tomography in detecting coronary artery disease in 134 symptomatic patients: influence of calcification. Am Heart J 151(6):1323 e1321–1326

    Google Scholar 

  12. Lau GT, Ridley LJ, Schieb MC et al (2005) Coronary artery stenoses: detection with calcium scoring, CT angiography, and both methods combined. Radiology 235(2):415–422

    Article  PubMed  Google Scholar 

  13. Diederichsen AC, Petersen H, Jensen LO et al (2009) Diagnostic value of cardiac 64-slice computed tomography: importance of coronary calcium. Scand Cardiovasc J 43(5):337–344

    Article  PubMed  CAS  Google Scholar 

  14. Stolzmann P, Scheffel H, Leschka S et al (2008) Influence of calcifications on diagnostic accuracy of coronary CT angiography using prospective ECG triggering. AJR Am J Roentgenol 191(6):1684–1689

    Article  PubMed  Google Scholar 

  15. Rumberger JA, Brundage BH, Rader DJ et al (1999) Electron beam computed tomographic coronary calcium scanning: a review and guidelines for use in asymptomatic persons. Mayo Clin Proc 74(3):243–252

    Article  PubMed  CAS  Google Scholar 

  16. Austen WG, Edwards JE, Frye RL et al (1975) A reporting system on patients evaluated for coronary artery disease. Report of the Ad Hoc Committee for Grading of Coronary Artery Disease, Council on Cardiovascular Surgery, American Heart Association. Circulation 51(4 Suppl):5–40

    Google Scholar 

  17. Haberl R, Becker A, Leber A et al (2001) Correlation of coronary calcification and angiographically documented stenoses in patients with suspected coronary artery disease: results of 1, 764 patients. J Am Coll Cardiol 37(2):451–457

    Article  PubMed  CAS  Google Scholar 

  18. Oudkerk M, Stillman AE, Halliburton SS et al (2008) Coronary artery calcium screening: current status and recommendations from the European society of cardiac radiology and North American society for cardiovascular imaging. Int J Cardiovasc Imaging 24(6):645–671

    Article  PubMed  Google Scholar 

  19. Motoyama S, Sarai M, Harigaya H et al (2009) Computed tomographic angiography characteristics of atherosclerotic plaques subsequently resulting in acute coronary syndrome. J Am Coll Cardiol 54(1):49–57

    Article  PubMed  Google Scholar 

  20. Ergun E, Kosar P, Ozturk C et al (2011) Prevalence and extent of coronary artery disease determined by 64-slice CTA in patients with zero coronary calcium score. Int J Cardiovasc Imaging 27(3):451–458

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the National Science Council, No. NSC95-2314-B-182A-131-MY2.

Conflict of interest

All authors assert that there are no conflicts of interest (both personal and institutional) regarding specific financial interests that are relevant to the work conducted or reported in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yung-Liang Wan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, CC., Chen, CC., Hsieh, IC. et al. The effect of calcium score on the diagnostic accuracy of coronary computed tomography angiography. Int J Cardiovasc Imaging 27 (Suppl 1), 37–42 (2011). https://doi.org/10.1007/s10554-011-9955-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-011-9955-6

Keywords

Navigation