Skip to main content
Log in

Impact of alcohol septal ablation on left anterior descending coronary artery blood flow in hypertrophic obstructive cardiomyopathy

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Objectives The aim of this study was to evaluate the effects of alcohol septal ablation (ASA) on coronary blood flow in symptomatic hypertrophic obstructive cardiomyopathy (HOCM) using cardiac MR (CMR) coronary flow measurements. Background CMR flow mapping enables quantification of coronary blood flow in a noninvasive way. Both left ventricular outflow tract (LVOT) gradient reduction and myocardial scarring after ASA are expected to influence left anterior descending (LAD) coronary blood flow. Methods Cine, contrast-enhanced (CE) imaging and breath-hold CMR phase contrast velocity mapping were performed at baseline and 1 and 6 months after ASA in seven patients. Changes of coronary blood flow were related to left ventricular (LV) mass reduction, enzyme release, volume of ethanol administered, LVOT gradient reduction, and LV rate pressure product (LVRPP). Results A significant mass reduction was observed both in the target septal myocardium and in the total myocardium (both P < 0.01). Mean myocardial infarct size was 23 ± 12 g (range 7.3–41.6 g). LVRPP decreased from 13,268 ± 2,212 to 10,685 ± 3,918 at 1 month (P = 0.05) and 9,483 ± 2,496 mmHg beats/min at 6 months’ follow-up (P < 0.01). LAD coronary blood flow decreased from 100 ± 37 ml/min at baseline to 84 ± 54 ml/min (P = 0.09) at 1 month and 67 ± 33 ml/min at 6 months follow-up (P < 0.01). A significant correlation was found between the change in LVRPP and LAD coronary flow at 1 month follow-up (r = 0.83, P = 0.02). CE-infarct size tended to modulate the blood flow changes over time (P = 0.12); no correlation was observed between enzyme release, volume of ethanol or both septal and total mass reduction and coronary blood flow. Conclusion The reduction in coronary blood flow is primarily associated with diminished LV loading conditions, whereas the induction of metabolically inactive myocardial scar tissue by ASA did not significantly influence the changes in coronary blood flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Maron BJ (2002) Hypertrophic cardiomyopathy: a systematic review. JAMA 287:1308–1320. doi:10.1001/jama.287.10.1308

    Article  PubMed  Google Scholar 

  2. Maron MS, Olivotto I, Betocchi S et al (2003) Effect of left ventricular outflow tract obstruction on clinical outcome in hypertrophic cardiomyopathy. N Engl J Med 348:295–303. doi:10.1056/NEJMoa021332

    Article  PubMed  Google Scholar 

  3. Cannon RO III, Schenke WH, Maron BJ et al (1987) Differences in coronary flow and myocardial metabolism at rest and during pacing between patients with obstructive and patients with nonobstructive hypertrophic cardiomyopathy. J Am Coll Cardiol 10:53–62

    Article  PubMed  Google Scholar 

  4. Camici PG, Crea F (2007) Coronary microvascular dysfunction. N Engl J Med 356:830–840. doi:10.1056/NEJMra061889

    Article  PubMed  CAS  Google Scholar 

  5. Cannon ROIII, Rosing DR, Maron BJ et al (1985) Myocardial ischemia in patients with hypertrophic cardiomyopathy: contribution of inadequate vasodilator reserve and elevated left ventricular filling pressures. Circulation 71:234–243

    PubMed  Google Scholar 

  6. Sigwart U (1995) Non-surgical myocardial reduction for hypertrophic obstructive cardiomyopathy. Lancet 346:211–214. doi:10.1016/S0140-6736(95)91267-3

    Article  PubMed  CAS  Google Scholar 

  7. Lakkis NM, Nagueh SF, Dunn JK, Killip D, Spencer WHIII (2000) Nonsurgical septal reduction therapy for hypertrophic obstructive cardiomyopathy: one-year follow-up. J Am Coll Cardiol 36:852–855. doi:10.1016/S0735-1097(00)00767-1

    Article  PubMed  CAS  Google Scholar 

  8. van Dockum WG, ten Cate FJ, ten Berg JM et al (2004) Myocardial infarction after percutaneous transluminal septal myocardial ablation in hypertrophic obstructive cardiomyopathy: evaluation by contrast-enhanced magnetic resonance imaging. J Am Coll Cardiol 43:27–34. doi:10.1016/j.jacc.2003.08.031

    Article  PubMed  Google Scholar 

  9. Roberts R, Sigwart U (2005) Current concepts of the pathogenesis and treatment of hypertrophic cardiomyopathy. Circulation 112:293–296. doi:10.1161/01.CIR.0000146788.30724.0A

    Article  PubMed  Google Scholar 

  10. Knaapen P, Germans T, Camici PG et al (2008) Determinants of coronary microvascular dysfunction in symptomatic hypertrophic cardiomyopathy. Am J Physiol Heart Circ Physiol 294:H986–H993. doi:10.1152/ajpheart.00233.2007

    Article  PubMed  CAS  Google Scholar 

  11. Hundley WG, Lange RA, Clarke GD et al (1996) Assessment of coronary arterial flow and flow reserve in humans with magnetic resonance imaging. Circulation 93:1502–1508

    PubMed  CAS  Google Scholar 

  12. van Dockum WG, Beek AM, ten Cate FJ et al (2005) Early onset and progression of left ventricular remodeling after alcohol septal ablation in hypertrophic obstructive cardiomyopathy. Circulation 111:2503–2508. doi:10.1161/01.CIR.0000165084.28065.01

    Article  PubMed  Google Scholar 

  13. Wu E, Judd RM, Vargas JD, Klocke FJ, Bonow RO, Kim RJ (2001) Visualisation of presence, location, and transmural extent of healed Q-wave and non-Q-wave myocardial infarction. Lancet 357:21–28. doi:10.1016/S0140-6736(00)03567-4

    Article  PubMed  CAS  Google Scholar 

  14. Westerhof N, Boer C, Lamberts RR, Sipkema P (2006) Cross-talk between cardiac muscle and coronary vasculature. Physiol Rev 86:1263–1308. doi:10.1152/physrev.00029.2005

    Article  PubMed  CAS  Google Scholar 

  15. Braunwald E (1971) Control of myocardial oxygen consumption: physiologic and clinical considerations. Am J Cardiol 27:416–432. doi:10.1016/0002-9149(71)90439-5

    Article  PubMed  CAS  Google Scholar 

  16. Cannon ROIII, McIntosh CL, Schenke WH, Maron BJ, Bonow RO, Epstein SE (1989) Effect of surgical reduction of left ventricular outflow obstruction on hemodynamics, coronary flow, and myocardial metabolism in hypertrophic cardiomyopathy. Circulation 79:766–775

    PubMed  Google Scholar 

  17. Jorg-Ciopor M, Namdar M, Turina J et al (2004) Regional myocardial ischemia in hypertrophic cardiomyopathy: impact of myectomy. J Thorac Cardiovasc Surg 128:163–169. doi:10.1016/j.jtcvs.2003.11.003

    Article  PubMed  Google Scholar 

  18. Rajappan K, Rimoldi OE, Camici PG, Bellenger NG, Pennell DJ, Sheridan DJ (2003) Functional changes in coronary microcirculation after valve replacement in patients with aortic stenosis. Circulation 107:3170–3175

    Article  PubMed  Google Scholar 

  19. Kuhn H, Gietzen FH, Schafers M et al (1999) Changes in the left ventricular outflow tract after transcoronary ablation of septal hypertrophy (TASH) for hypertrophic obstructive cardiomyopathy as assessed by transoesophageal echocardiography and by measuring myocardial glucose utilization and perfusion. Eur Heart J 20:1808–1817. doi:10.1053/euhj.1999.1692

    Article  PubMed  CAS  Google Scholar 

  20. Cecchi F, Olivotto I, Gistri R, Lorenzoni R, Chiriatti G, Camici PG (2003) Coronary microvascular dysfunction and prognosis in hypertrophic cardiomyopathy. N Engl J Med 349:1027–1035. doi:10.1056/NEJMoa025050

    Article  PubMed  CAS  Google Scholar 

  21. Maron MS, Olivotto I, Betocchi S et al (2003) Effect of left ventricular outflow tract obstruction on clinical outcome in hypertrophic cardiomyopathy. N Engl J Med 348:295–303. doi:10.1056/NEJMoa021332

    Article  PubMed  Google Scholar 

  22. Soliman OI, Geleijnse ML, Michels M, Dijkmans PA, Nemes A, van Dalen BM, Vletter WB, Serruys PW, ten Cate FJ (2008) Effect of successful alcohol septal ablation on microvascular function in patients with obstructive hypertrophic cardiomyopathy. Am J Cardiol 101(9):1321–1327. doi:10.1016/j.amjcard.2007.12.032

    Article  PubMed  Google Scholar 

  23. Hofman MB, Wickline SA, Lorenz CH (1998) Quantification of in-plane motion of the coronary arteries during the cardiac cycle: implications for acquisition window duration for MR flow quantification. J Magn Reson Imaging 8:568–576. doi:10.1002/jmri.1880080309

    Article  PubMed  CAS  Google Scholar 

  24. Keegan J, Gatehouse PD, Mohiaddin RH, Yang GZ, Firmin DN (2004) Comparison of spiral and FLASH phase velocity mapping, with and without breath-holding, for the assessment of left and right coronary artery blood flow velocity. J Magn Reson Imaging 19:40–49. doi:10.1002/jmri.10434

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grant 99.203 from the Netherlands Heart Foundation and the Interuniversity Cardiology Institute of the Netherlands.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willem G. van Dockum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Dockum, W.G., Knaapen, P., Hofman, M.B.M. et al. Impact of alcohol septal ablation on left anterior descending coronary artery blood flow in hypertrophic obstructive cardiomyopathy. Int J Cardiovasc Imaging 25, 511–518 (2009). https://doi.org/10.1007/s10554-009-9437-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-009-9437-2

Keywords

Navigation