Abstract
Objective
To examine the effects of various anthropometric determinants on mammographic patterns at postmenopausal ages, accounting for reproductive differences.
Methods
Mammograms from 900 post-menopausal women classified into high- (P2/DY) versus low-density (N1/P1) groups using the Wolfe criteria were associated with changes in body figure, reported and measured height and weight, body mass index, hip, waist and chest circumferences, chest/hip ratio, waist/hip ratio (WHR), breast size, and leg length. Reproductive factors included ages at menarche, first pregnancy and menopause, years since menopause, parity, and breast feeding duration. The study was nested within a large cross-sectional survey of a population-based breast cancer screening program in Northern Greece.
Results
Increasing chest circumference (p = 0.002), change in body build during adulthood to a heavier profile (p = 0.04), and heavy somatotype at age 18 (p = 0.007) were the anthropometric determinants significantly associated with low-density mammographic patterns.
Conclusions
Chest circumference as a measure of upper body fat adiposity appears to be a stronger determinant of mammographic patterns than body fat distribution (measured as WHR). A heavy body build in adulthood is associated with decreased mammographic density. Further studies are necessary to confirm our results, ideally prospective cohorts, looking at the effect of anthropometric determinants on mammographic pattern changes over time and breast cancer risk.
Similar content being viewed by others
References
Saftlas AF, Szklo M (1987) Mammographic parenchymal patterns and breast cancer risk. Epidemiol Rev 9:146–74
Oza AM, Boyd NF (1993) Mammographic parenchymal patterns: a marker for breast cancer risk. Epidemiol Rev 15:196–208
Byrne C, Schairer C, Wolfe JN, Parekh N, Salane M, Brinton LA, Hoover R, Haile R (1995) Mammographic features and breast cancer risk: effects with time, age and menopause status. J Natl Cancer Inst 87:1622–29. doi:10.1093/jnci/87.21.1622
Ekbom A, Thurfjell E, Hsieh CC, Trichopoulos D, Adami HO (1995) Perinatal characteristics and adult mammographic patterns. Int J Cancer 61:177–80. doi:10.1002/ijc.2910610206
Sala E, Warren R, McCann J, Duffy S, Luben R, Day N (1999) High-risk mammographic parenchymal patterns and anthropometric measures: a case–control study. Br J Cancer 81:1257–1261. doi:10.1038/sj.bjc.6690838
Crandall C, Palla S, Reboussin BA, Ursin G, Greendale GA (2004) Positive association between mammographic breast density and bone mineral density in the Postmenopausal Estrogen/Progestin Interventions Study. Breast Cancer Res 7:922–928. doi:10.1186/bcr1327
Gram IT, Funkhouser E, Tabar L (1995) Reproductive and menstrual factors in relation to mammographic parenchymal patterns among perimenopausal women. Br J Cancer 75:647–650
Ursin G, Longnecker MP, Hale RW, Greenland SA (1995) A meta-analysis of body mass index and risk of pre-menopausal breast cancer. Epidemiology 6:137–141. doi:10.1097/00001648-199503000-00009
Gram IT, Funkhouser E, Tabar L (1997) Anthropometric indices in relation to mammographic patterns in peri-menopausal women. Int J Cancer 73:323–326. doi:10.1002/(SICI)1097-0215(19971104)73:3<323::AID-IJC3>3.0.CO;2-1
Sellers TA, Kushi LH, Potter JD, Kaye SA et al (1992) Effect of family history, body-fat distribution, and reproductive factors on the risk of postmenopausal breast cancer. N Engl J Med 326:1323–1329
Hunter DJ, Willett WC (1993) Diet, body size and breast cancer risk. Epidemiol Rev 15:110–132
Li CI, Stanford JL, Daling JR (2000) Anthropometric variables in relation to risk of breast cancer in middle-aged women. Int J Epidemiol 29:208–213. doi:10.1093/ije/29.2.208
Salminen T, Hakama M, Heikkila M, Saarenmaa I (1998) Favorable change in mammographic parenchymal patterns and breast cancer risk factors. Int J Cancer 78:410–414. doi:10.1002/(SICI)1097-0215(19981109)78:4<410::AID-IJC3>3.0.CO;2-X
Leon DA, Carpenter LM, Broeders MJ, Gunnarskog J, Murphy MF (1995) Breast cancer in Swedish women before age 50: evidence of a dual effect of completed pregnancy. Cancer Causes Control 6(4):283–91. doi:10.1007/BF00051403
Negri E, Braga C, LaVecchia C, Levi F, Talamini R, Franceschi S (1996) Lactation and the risk of breast cancer in an Italian population. Int J Cancer 67:161–164. doi:10.1002/(SICI)1097-0215(19960717)67:2<161::AID-IJC1>3.0.CO;2-R
Chie WC, Hsieh C, Newcomb PA, Longnecker MP et al (2000) Age at any full-term pregnancy and breast cancer risk. Am J Epidemiol 151:715–722
Collaborative Group on Hormonal Factors in Breast Cancer (2002) Breast cancer and breastfeeding: collaborative reanalysis of individual data from 47 epidemiological studies in 30 countries, including 50,302 women with breast cancer and 96,973 women without the disease. Lancet 360:187–195. doi:10.1016/S0140-6736(02)09454-0
Boyd NF, Byng JW, Jong RA, Fishell EK et al (1995) Quantitative classification of mammographic densities and breast cancer risk: results from the Canadian National Breast Screening Study. J Natl Cancer Inst 87:670–675. doi:10.1093/jnci/87.9.670
Byrne C (1997) Studying mammographic density: implications for understanding breast cancer. J Natl Cancer Inst 89:531–533. doi:10.1093/jnci/89.8.531
Wolfe JN (1976) Breast patterns as an index of risk for developing breast cancer. Am J Roentgenol 126:1130–1137
Carlile T, Kopecky KJ, Thompson DJ et al (1985) Breast cancer prediction and the Wolfe classification of mammograms. J Am Med Assoc 254:1050–1053. doi:10.1001/jama.254.8.1050
Tabar L, Dean P (1982) Mammographic parenchymal patterns: risk indicator for breast cancer? J Am Med Assoc 247:185–189. doi:10.1001/jama.247.2.185
Whitehead J, Carlile T, Kopecky KJ, Thompson DJ et al (1985) The relationship between Wolfe’s classification of mammograms, accepted breast cancer risk factors and the incidence of breast cancer. Am J Epidemiol 122:994–1006
Leinster SJ, Walsh PV, Whitehouse GH, Al-Sumidaie AM (1988) Factors associated with mammographic parenchymal patterns. Clin Radiol 39(3):252–256. doi:10.1016/S0009-9260(88)80519-1
De Stavola B, Gravelle IH, Wang DY, Allen DS, Bulbrook RD, Fentiman IS et al (1990) Relationship of mammographic parenchymal patterns with breast cancer risk factors and risk of breast cancer in a prospective study. Int J Epidemiol 19:247–254. doi:10.1093/ije/19.2.247
Sellers TA, Vachon CM, Pankratz VS, Janney CA, Fredericksen Z, Brandt KR, Huang Y, Couch FJ, Kushi LH, Cerhan JR (2007) Association of childhood and adolescent anthropometric factors, physical activity and diet with adult mammographic breast density. Am J Epidemiol 166:456–464. doi:10.1093/aje/kwm112
Mandelson MT, Oestreicher N, Porter PL, White D, Finder CA, Taplin SH, White E (2000) Breast density as a predictor of mammographic detection: comparison of interval- and screen-detected cancers. J Natl Cancer Inst 92:1081–1087. doi:10.1093/jnci/92.13.1081
Ciatto S, Visioli C, Paci E, Zappa M (2004) Breast density as a determinant of interval cancer at mammographic screening. Br J Cancer 90:393–396. doi:10.1038/sj.bjc.6601548
Riza E, dos Santos Silva I, De Stavola B, Perry N, Karadedou-Zafiriadou E, Linos D, Remoundos DD, Linos A (2005) Correlates of high-density mammographic parenchymal patterns by menopausal status in a rural population in Northern Greece. Eur J Cancer 41(4):590–600. doi:10.1016/j.ejca.2004.12.014
Muñoz KA, Ballard-Barbash R, Graubard B, Swanson CA, Schairer C, Kahle LL (1996) Recall of body weight and body size estimation in women enrolled in the breast cancer demonstration and detection project (BCDDP). Int J Obes 20:854–859
Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 22:719–748
Clayton D, Hills M (1993) Statistical models in epidemiology. Oxford University Press, Oxford, pp 261–281
Kerlikowske K, Shepherd J, Creasman J, Tice JA, Ziv E, Cummungs SR (2005) Are breast density and mineral density independent risk factors for breast cancer? J Natl Cancer Inst 97:368–374
McCormack VA, dos Santos Silva I (2006) Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev 15:1159–1169. doi:10.1158/1055-9965.EPI-06-0034
Vacek PM, Geller BM (2004) A prospective study of breast cancer risk using routine mammographic breast density measurements. Cancer Epidemiol Biomarkers Prev 13:715–722
Masala G, Ambrogetti D, Assedi M, Giorgi D, del Rosseli Turco M, Palli D (2006) Dietary and lifestyle determinants of mammographic breast density. A longitudinal study in a Mediterranean population. Int J Cancer 118:1782–1789. doi:10.1002/ijc.21558
Lahmann PH, Lissner L, Gullberg B, Olsson H, Berglund G (2003) A prospective study of adiposity and postmenopausal breast cancer risk: the Malmö Diet and Cancer Study. Int J Cancer 103:246–252. doi:10.1002/ijc.10799
Salminen T, Saarenmaa I, Heikkeila M, Hakama M (1999) Unfavourable change in mammographic patterns and the breast cancer risk factors. Breast Cancer Res Treat 57:165–173. doi:10.1023/A:1006235206513
van den Brandt PA, Spiegelman D, Yaun SS, Adami HO et al (2000) Pooled analysis of prospective cohort studies on height, weight, and breast cancer risk. Am J Epidemiol 152:514–527. doi:10.1093/aje/152.6.514
Beijerinck D, van Noord PAH, Seidell JC, de Tonkelaar I et al (1991) Abdominal fat predominance in women is associated with a decreased incidence of the high risk P2, DY mammographic breast patterns. Int J Obes 15:89–93
Egan KM, Newcomb PA, Titus-Ernstoff L, Trendham-Dietz A, Baron JA, Willett WC, Stampfer MJ, Trichopoulos D (1999) The relation of breast size to breast cancer risk in postmenopausal women (United States). Cancer Causes Control 10:115–118. doi:10.1023/A:1008801131831
Tehard B, Clavel-Chapelon F (2006) Several anthropometric measurements and breast cancer risk: results of the E3N cohort study. Int J Obes 30:156–163. doi:10.1038/sj.ijo.0803133
Björkelund C, Lissner L, Andersson S, Lapidus L, Bengtsson C (1996) Reproductive history in relation to relative weight and body fat distribution. Int J Obes 20:213–219
Must A, Willett WC, Dietz WH (1993) Remote recall of childhood height, weight and body build by elderly subjects. Am J Epidemiol 138:56–64
Casey VA, Dwyer JT, Berkey CS, Coleman KA, Gardner IV (1991) Long-term memory of body weight and past weight satisfaction: a longitudinal follow-up study. Am J Clin Nutr 53:1493–1498
Huang Z, Hankinson SE, Golditz GA, Stampfer MJ, Hunter DJ, Manson J, Hennekens CH, Rosner B, Speizer FE, Willett WC (1997) Dual effects of weight and weight gain on breast cancer risk. J Am Med Assoc 278(17):1407–1411
Barnes-Josiah D, Potter JD, Selllers TA, Himes JH (1995) Early body size and subsequent weight gain as predictors of breast cancer incidence (Iowa, United States). Cancer Causes Control 6:112–118. doi:10.1007/BF00052771
Stoll BA (1998) Teenage obesity in relation to breast cancer. Int J Obes 22:1035–1040. doi:10.1038/sj.ijo.0800769
Brinton LA, Swanson CA (1992) Height and weight at various ages and risk of breast cancer. Ann Epidemiol 2:597–609
Chu SY, Lee NC, Wingo PA, Senie RT, Greenberg RS, Peterson HB (1991) The relationships between body mass and breast cancer among women enrolled in the cancer and steroid hormone study. J Clin Epidemiol 44:1197–1206. doi:10.1016/0895-4356(91)90152-Y
Lubin F, Ruder AM, Wax Y, Modan B (1985) Overweight and changes in weight throughout adult life in breast cancer etiology. A case–control study. Am J Epidemiol 122(4):579–588
Kumar NB, Lyman GH, Allen K, Cox CE, Shapira DV (1995) Timing of weight gain and breast cancer risk. Cancer 76:243–249. doi:10.1002/1097-0142(19950715)76:2<243::AID-CNCR2820760214>3.0.CO;2-R
Shapira DV, Kumar NB, Lyman GH (1991) Estimate of breast cancer risk reduction with weight loss. Cancer 67:2622–2625. doi:10.1002/1097-0142(19910515)67:10<2622::AID-CNCR2820671037>3.0.CO;2-J
Thurfjell E, Hsieh CC, Lipworth L, Ekbom A, Adami HO, Trichopoulos D (1996) Breast size and mammographic pattern in relation to breast cancer risk. Eur J Cancer Prev 5:37–41. doi:10.1097/00008469-199612002-00006
van der Brandt PA, Dirx MJ, Ronkers CM, van den Hoogen P, Goldbohm RA (1997) Height, weight, weight change and postmenopausal breast cancer risk: The Netherlands Cohort Study. Cancer Causes Control 8(1):39–47. doi:10.1023/A:1018479020716
McCormack VA, dos Santos Silva I, De Stavola BL, Perry N, Vinnicombe S, Swerdlow AJ, Hardy R, Kuh D (2003) Life-course body size in perimenopausal mammographic parenchymal patterns in the MRC 1946 British birth cohort. Br J Cancer 89:852–859. doi:10.1038/sj.bjc.6601207
Vachon CM, Kuni CC, Anderson K, Elving Anderson V, Sellers TA (2000) Association of mammographically defined percent breast density with epidemiologic factors for breast cancer (United States). Cancer Causes Control 11:653–662. doi:10.1023/A:1008926607428
Boyd NF, Wolfson C, Moskowitz M, Carlile T, Petitclerc C et al (1986) Observer variation in the classification of mammographic parenchymal patterns. J Chron Dis 39(6):465–472. doi:10.1016/0021-9681(86)90113-X
Toniolo P, Bleich AR, Beinart C, Koenig KL (1992) Reproducibility of Wolfe’s classification of mammographic parenchymal patterns. Prev Med 21:1–7. doi:10.1016/0091-7435(92)90001-X
Vachon CM, van Gils CH, Sellers TA, Ghosh K, Pruthi S, Brandt KR, Pankratz SV (2007) Mammographic density, breast cancer risk and risk prediction. Breast Cancer Res 9:217
Mc Cormack VA, Highnam R, Perry N, dos Santos Silva I (2007) Comparison of a new and existing method of mammographic density measurement: intramethod reliability and associations with known risk factors. Cancer Epidemiol Biomarkers Prev 16(6):1148. doi:10.1158/1055-9965.EPI-07-0085
Kopans DB (2008) Basic physics and doubts about relationship between mammographically determined tissue density and breast cancer risk. Radiology 246(2):348–53. doi:10.1148/radiol.2461070309
Boyd NF, Rommens JM, Vogt K, Hopper JL, Yaffe MJ, Peterson AD (2005) Mammographic breast density as an intermediate phenotype for breast cancer. Lancet Oncol 6:798–808. doi:10.1016/S1470-2045(05)70390-9
Acknowledgments
The authors would like to thank the women of Halkidiki for their willingness in participating in this study as well as all members of the staff of the screening Center “Our Lady Who Loves Mankind” in Ormylia-Halkidiki.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Riza, E., Remoundos, DD., Bakali, E. et al. Anthropometric characteristics and mammographic parenchymal patterns in post-menopausal women: a population-based study in Northern Greece. Cancer Causes Control 20, 181–191 (2009). https://doi.org/10.1007/s10552-008-9232-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10552-008-9232-8