Skip to main content

Advertisement

Log in

Liver tropism of ER mutant breast cancer is characterized by unique molecular changes and immune infiltration

  • Original Laboratory Investigation
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

Hotspot estrogen receptor alpha (ER/ESR1) mutations are recognized as the driver for both endocrine resistance and metastasis in advanced ER-positive (ER+) breast cancer, but their contributions to metastatic organ tropism remain insufficiently understood. In this study, we aim to comprehensively profile the organotropic metastatic pattern for ESR1 mutant breast cancer.

Methods

The organ-specific metastatic pattern of ESR1 mutant breast cancer was delineated using multi-omics data from multiple publicly available cohorts of ER+ metastatic breast cancer patients. Gene mutation/copy number variation (CNV) and differential gene expression analyses were performed to identify the genomic and transcriptomic alterations uniquely associated with ESR1 mutant liver metastasis. Upstream regulator, downstream pathway, and immune infiltration analysis were conducted for subsequent mechanistic investigations.

Results

ESR1 mutation-driven liver tropism was revealed by significant differences, encompassing a higher prevalence of liver metastasis in patients with ESR1 mutant breast cancer and an enrichment of mutations in liver metastatic samples. The significant enrichment of AGO2 copy number amplifications (CNAs) and multiple gene expression changes were revealed uniquely in ESR1 mutant liver metastasis. We also unveiled alterations in downstream signaling pathways and immune infiltration, particularly an enrichment of neutrophils, suggesting potential therapeutic vulnerabilities.

Conclusion

Our data provide a comprehensive characterization of the behaviors and mechanisms of ESR1 mutant liver metastasis, paving the way for the development of personalized therapy to target liver metastasis for patients with ESR1 mutant breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data availability

All data analyzed in this study have previously been reported [23, 31, 33, 37,38,39, 47, 71,72,73,74] and are publicly available. For genomic analysis, the genetic alterations and clinical characteristics in the studies by Nguyen et al. [33] and Razavi et al. [23] were downloaded from cBioPortal (https://www.cbioportal.org/) [35, 36]. The ESR1 genotype status and metastatic site information in the studies by Jeselsohn et al. [31], Pleasance et al. [38], Paul et al. [37], and Robinson et al. [39] were downloaded from the supplementary data of the published papers [30]. For transcriptomic analysis, the data from DFCI cohort have been described in previous publications [31, 47, 71,72,73,74] and deposited into the database of Genotypes and Phenotypes (dbGaP) with accession number phs001285.v1.p1. For the MET500 cohort [39], data were downloaded from USCS Xena (https://xenabrowser.net/) and are available from dbGaP with accession number phs000673.v4.p1. For the POG570 cohort [74], raw data were downloaded from the BCGSC portal. The codes used in R Studio were deposited to Code Ocean (https://codeocean.com/capsule/2246397/tree).

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA 71:209–249. https://doi.org/10.3322/caac.21660

    Article  CAS  PubMed  Google Scholar 

  2. Redig AJ, McAllister SS (2013) Breast cancer as a systemic disease: a view of metastasis. J Intern Med 274:113–126. https://doi.org/10.1111/joim.12084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pantel K, Brakenhoff RH (2004) Dissecting the metastatic cascade. Nat Rev Cancer 4:448–456. https://doi.org/10.1038/nrc1370

    Article  CAS  PubMed  Google Scholar 

  4. Wu Y, Sarkissyan M, Vadgama JV (2016) Epithelial-mesenchymal transition and breast cancer. J Clin Med 5:13. https://doi.org/10.3390/jcm5020013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ye X, Brabletz T, Kang Y, Longmore GD, Nieto MA, Stanger BZ, Yang J, Weinberg RA (2017) Upholding a role for EMT in breast cancer metastasis. Nature 547:E1–E3. https://doi.org/10.1038/nature22816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hunter KW, Crawford NPS, Alsarraj J (2008) Mechanisms of metastasis. Breast Cancer Res 10:S2. https://doi.org/10.1186/bcr1988

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mina LA, Sledge GW (2011) Rethinking the metastatic cascade as a therapeutic target. Nat Rev Clin Oncol 8:325–332. https://doi.org/10.1038/nrclinonc.2011.59

    Article  CAS  PubMed  Google Scholar 

  8. Lu X, Kang Y (2007) Organotropism of breast cancer metastasis. J Mammary Gland Biol Neoplasia 12:153–162. https://doi.org/10.1007/s10911-007-9047-3

    Article  PubMed  Google Scholar 

  9. Chen W, Hoffmann AD, Liu H, Liu X (2018) Organotropism: new insights into molecular mechanisms of breast cancer metastasis. NPJ Precis Oncol 2: 4. https://doi.org/10.1038/s41698-018-0047-0

  10. Wei S, Siegal GP (2017) Metastatic organotropism: an intrinsic property of breast cancer molecular subtypes. Adv Anat Pathol 24:78–81

    Article  CAS  PubMed  Google Scholar 

  11. Wong GL, Abu Jalboush S, Lo H-W (2020) Exosomal microRNAs and organotropism in breast cancer metastasis. Cancers 12:1827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mo Z, Cheong JYA, Xiang L, Le MTN, Grimson A, Zhang DX (2021) Extracellular vesicle-associated organotropic metastasis. Cell Prolif 54:e12948. https://doi.org/10.1111/cpr.12948

    Article  PubMed  Google Scholar 

  13. Yu T, Wang C, Xie M, Zhu C, Shu Y, Tang J, Guan X (2021) Heterogeneity of CTC contributes to the organotropism of breast cancer. Biomed Pharmacother 137:111314. https://doi.org/10.1016/j.biopha.2021.111314

    Article  CAS  PubMed  Google Scholar 

  14. Wang C, Xu K, Wang R, Han X, Tang J, Guan X (2021) Heterogeneity of BCSCs contributes to the metastatic organotropism of breast cancer. J Exp Clin Cancer Res 40:370. https://doi.org/10.1186/s13046-021-02164-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Smith HA, Kang Y (2017) Determinants of organotropic metastasis. Annu Rev Cancer Biol 1:403–423. https://doi.org/10.1146/annurev-cancerbio-041916-064715

    Article  Google Scholar 

  16. Waza AA, Tarfeen N, Majid S, Hassan Y, Mir R, Rather MY, Shah NUD (2021) Metastatic breast cancer, organotropism and therapeutics: a review. Curr Cancer Drug Targets 21:813–828. https://doi.org/10.2174/1568009621666210806094410

    Article  CAS  PubMed  Google Scholar 

  17. Blows FM, Driver KE, Schmidt MK, Broeks A, van Leeuwen FE, Wesseling J, Cheang MC, Gelmon K, Nielsen TO, Blomqvist C, Heikkila P, Heikkinen T, Nevanlinna H, Akslen LA, Begin LR, Foulkes WD, Couch FJ, Wang X, Cafourek V, Olson JE, Baglietto L, Giles GG, Severi G, McLean CA, Southey MC, Rakha E, Green AR, Ellis IO, Sherman ME, Lissowska J, Anderson WF, Cox A, Cross SS, Reed MW, Provenzano E, Dawson SJ, Dunning AM, Humphreys M, Easton DF, Garcia-Closas M, Caldas C, Pharoah PD, Huntsman D (2010) Subtyping of breast cancer by immunohistochemistry to investigate a relationship between subtype and short and long term survival: a collaborative analysis of data for 10,159 cases from 12 studies. PLoS Med 7:e1000279. https://doi.org/10.1371/journal.pmed.1000279

    Article  PubMed  PubMed Central  Google Scholar 

  18. DeSantis CE, Ma J, Goding Sauer A, Newman LA, Jemal A (2017) Breast cancer statistics, 2017, racial disparity in mortality by state. CA Cancer J Clin 67:439–448. https://doi.org/10.3322/caac.21412

    Article  PubMed  Google Scholar 

  19. Carroll JS, Meyer CA, Song J, Li W, Geistlinger TR, Eeckhoute J, Brodsky AS, Keeton EK, Fertuck KC, Hall GF, Wang Q, Bekiranov S, Sementchenko V, Fox EA, Silver PA, Gingeras TR, Liu XS, Brown M (2006) Genome-wide analysis of estrogen receptor binding sites. Nat Genet 38:1289–1297. https://doi.org/10.1038/ng1901

    Article  CAS  PubMed  Google Scholar 

  20. Chu D, Paoletti C, Gersch C, VanDenBerg DA, Zabransky DJ, Cochran RL, Wong HY, Toro PV, Cidado J, Croessmann S, Erlanger B, Cravero K, Kyker-Snowman K, Button B, Parsons HA, Dalton WB, Gillani R, Medford A, Aung K, Tokudome N, Chinnaiyan AM, Schott A, Robinson D, Jacks KS, Lauring J, Hurley PJ, Hayes DF, Rae JM, Park BH (2016) ESR1 mutations in circulating plasma tumor DNA from metastatic breast cancer patients. Clin Cancer Res 22:993–999. https://doi.org/10.1158/1078-0432.CCR-15-0943

    Article  CAS  PubMed  Google Scholar 

  21. Spoerke JM, Gendreau S, Walter K, Qiu J, Wilson TR, Savage H, Aimi J, Derynck MK, Chen M, Chan IT, Amler LC, Hampton GM, Johnston S, Krop I, Schmid P, Lackner MR (2016) Heterogeneity and clinical significance of ESR1 mutations in ER-positive metastatic breast cancer patients receiving fulvestrant. Nat Commun 7:11579. https://doi.org/10.1038/ncomms11579

    Article  PubMed  PubMed Central  Google Scholar 

  22. Guttery DS, Page K, Hills A, Woodley L, Marchese SD, Rghebi B, Hastings RK, Luo J, Pringle JH, Stebbing J, Coombes RC, Ali S, Shaw JA (2015) Noninvasive detection of activating estrogen receptor 1 (ESR1) mutations in estrogen receptor-positive metastatic breast cancer. Clin Chem 61:974–982. https://doi.org/10.1373/clinchem.2015.238717

    Article  CAS  PubMed  Google Scholar 

  23. Razavi P, Chang MT, Xu G, Bandlamudi C, Ross DS, Vasan N, Cai Y, Bielski CM, Donoghue MTA, Jonsson P, Penson A, Shen R, Pareja F, Kundra R, Middha S, Cheng ML, Zehir A, Kandoth C, Patel R, Huberman K, Smyth LM, Jhaveri K, Modi S, Traina TA, Dang C, Zhang W, Weigelt B, Li BT, Ladanyi M, Hyman DM, Schultz N, Robson ME, Hudis C, Brogi E, Viale A, Norton L, Dickler MN, Berger MF, Iacobuzio-Donahue CA, Chandarlapaty S, Scaltriti M, Reis-Filho JS, Solit DB, Taylor BS, Baselga J (2018) The genomic landscape of endocrine-resistant advanced breast cancers. Cancer Cell 34:427-438.e426. https://doi.org/10.1016/j.ccell.2018.08.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Arnesen S, Blanchard Z, Williams MM, Berrett KC, Li Z, Oesterreich S, Richer JK, Gertz J (2021) Estrogen receptor alpha mutations in breast cancer cells cause gene expression changes through constant activity and secondary effects. Cancer Res 81:539. https://doi.org/10.1158/0008-5472.CAN-20-1171

    Article  CAS  PubMed  Google Scholar 

  25. Toy W, Shen Y, Won H, Green B, Sakr RA, Will M, Li Z, Gala K, Fanning S, King TA, Hudis C, Chen D, Taran T, Hortobagyi G, Greene G, Berger M, Baselga J, Chandarlapaty S (2013) ESR1 ligand-binding domain mutations in hormone-resistant breast cancer. Nat Genet 45:1439–1445. https://doi.org/10.1038/ng.2822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Harrod A, Fulton J, Nguyen VT, Periyasamy M, Ramos-Garcia L, Lai C-F, Metodieva G, de Giorgio A, Williams RL, Santos DB (2017) Genomic modelling of the ESR1 Y537S mutation for evaluating function and new therapeutic approaches for metastatic breast cancer. Oncogene 36:2286

    Article  CAS  PubMed  Google Scholar 

  27. Bahreini A, Li Z, Wang P, Levine KM, Tasdemir N, Cao L, Weir HM, Puhalla SL, Davidson NE, Stern AM (2017) Mutation site and context dependent effects of ESR1 mutation in genome-edited breast cancer cell models. Breast Cancer Res 19:60

    Article  PubMed  PubMed Central  Google Scholar 

  28. Merenbakh-Lamin K, Ben-Baruch N, Yeheskel A, Dvir A, Soussan-Gutman L, Jeselsohn R, Yelensky R, Brown M, Miller VA, Sarid D (2013) D538G mutation in estrogen receptor-α: a novel mechanism for acquired endocrine resistance in breast cancer. Cancer Res 73:6856–6864

    Article  CAS  PubMed  Google Scholar 

  29. Weis KE, Ekena K, Thomas JA, Lazennec G, Katzenellenbogen BS (1996) Constitutively active human estrogen receptors containing amino acid substitutions for tyrosine 537 in the receptor protein. Mol Endocrinol 10:1388–1398. https://doi.org/10.1210/mend.10.11.8923465

    Article  CAS  PubMed  Google Scholar 

  30. Li Z, Wu Y, Yates ME, Tasdemir N, Bahreini A, Chen J, Levine KM, Priedigkeit NM, Nasrazadani A, Ali S, Buluwela L, Arnesen S, Gertz J, Richer JK, Troness B, El-Ashry D, Zhang Q, Gerratana L, Zhang Y, Cristofanilli M, Montanez MA, Sundd P, Wallace CT, Watkins SC, Fumagalli C, Guerini-Rocco E, Zhu L, Tseng GC, Wagle N, Carroll JS, Jank P, Denkert C, Karsten MM, Blohmer JU, Park BH, Lucas PC, Atkinson JM, Lee AV, Oesterreich S (2022) Hotspot ESR1 mutations are multimodal and contextual modulators of breast cancer metastasis. Cancer Res. https://doi.org/10.1158/0008-5472.Can-21-2576

    Article  PubMed  PubMed Central  Google Scholar 

  31. Jeselsohn R, Bergholz JS, Pun M, Cornwell M, Liu W, Nardone A, Xiao T, Li W, Qiu X, Buchwalter G (2018) Allele-specific chromatin recruitment and therapeutic vulnerabilities of ESR1 activating mutations. Cancer Cell 33(173–186):e175

    Google Scholar 

  32. Zinger L, Merenbakh-Lamin K, Klein A, Elazar A, Journo S, Boldes T, Pasmanik-Chor M, Spitzer A, Rubinek T, Wolf I (2019) Ligand-binding domain-activating mutations of ESR1 rewire cellular metabolism of breast cancer cells. Clin Cancer Res 25:2900–2914. https://doi.org/10.1158/1078-0432.Ccr-18-1505

    Article  CAS  PubMed  Google Scholar 

  33. Nguyen B, Fong C, Luthra A, Smith SA, DiNatale RG, Nandakumar S, Walch H, Chatila WK, Madupuri R, Kundra R, Bielski CM, Mastrogiacomo B, Donoghue MTA, Boire A, Chandarlapaty S, Ganesh K, Harding JJ, Iacobuzio-Donahue CA, Razavi P, Reznik E, Rudin CM, Zamarin D, Abida W, Abou-Alfa GK, Aghajanian C, Cercek A, Chi P, Feldman D, Ho AL, Iyer G, Janjigian YY, Morris M, Motzer RJ, O’Reilly EM, Postow MA, Raj NP, Riely GJ, Robson ME, Rosenberg JE, Safonov A, Shoushtari AN, Tap W, Teo MY, Varghese AM, Voss M, Yaeger R, Zauderer MG, Abu-Rustum N, Garcia-Aguilar J, Bochner B, Hakimi A, Jarnagin WR, Jones DR, Molena D, Morris L, Rios-Doria E, Russo P, Singer S, Strong VE, Chakravarty D, Ellenson LH, Gopalan A, Reis-Filho JS, Weigelt B, Ladanyi M, Gonen M, Shah SP, Massague J, Gao J, Zehir A, Berger MF, Solit DB, Bakhoum SF, Sanchez-Vega F, Schultz N (2022) Genomic characterization of metastatic patterns from prospective clinical sequencing of 25,000 patients. Cell 185:563-575.e511. https://doi.org/10.1016/j.cell.2022.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gerratana L, Davis AA, Polano M, Zhang Q, Shah AN, Lin C, Basile D, Toffoli G, Wehbe F, Puglisi F, Behdad A, Platanias LC, Gradishar WJ, Cristofanilli M (2021) Understanding the organ tropism of metastatic breast cancer through the combination of liquid biopsy tools. Eur J Cancer 143:147–157. https://doi.org/10.1016/j.ejca.2020.11.005

    Article  CAS  PubMed  Google Scholar 

  35. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, Antipin Y, Reva B, Goldberg AP, Sander C, Schultz N (2012) The cBio Cancer Genomics Portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2:401–404. https://doi.org/10.1158/2159-8290.Cd-12-0095

    Article  PubMed  Google Scholar 

  36. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, Cerami E, Sander C, Schultz N (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6:pl1. https://doi.org/10.1126/scisignal.2004088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Paul MR, Pan TC, Pant DK, Shih NN, Chen Y, Harvey KL, Solomon A, Lieberman D, Morrissette JJ, Soucier-Ernst D, Goodman NG, Stavropoulos SW, Maxwell KN, Clark C, Belka GK, Feldman M, DeMichele A, Chodosh LA (2020) Genomic landscape of metastatic breast cancer identifies preferentially dysregulated pathways and targets. J Clin Invest 130:4252–4265. https://doi.org/10.1172/jci129941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pleasance E, Titmuss E, Williamson L, Kwan H, Culibrk L, Zhao EY, Dixon K, Fan K, Bowlby R, Jones MR, Shen Y, Grewal JK, Ashkani J, Wee K, Grisdale CJ, Thibodeau ML, Bozoky Z, Pearson H, Majounie E, Vira T, Shenwai R, Mungall KL, Chuah E, Davies A, Warren M, Reisle C, Bonakdar M, Taylor GA, Csizmok V, Chan SK, Zong Z, Bilobram S, Muhammadzadeh A, D’Souza D, Corbett RD, MacMillan D, Carreira M, Choo C, Bleile D, Sadeghi S, Zhang W, Wong T, Cheng D, Brown SD, Holt RA, Moore RA, Mungall AJ, Zhao Y, Nelson J, Fok A, Ma Y, Lee MKC, Lavoie J-M, Mendis S, Karasinska JM, Deol B, Fisic A, Schaeffer DF, Yip S, Schrader K, Regier DA, Weymann D, Chia S, Gelmon K, Tinker A, Sun S, Lim H, Renouf DJ, Laskin J, Jones SJM, Marra MA (2020) Pan-cancer analysis of advanced patient tumors reveals interactions between therapy and genomic landscapes. Nat Cancer 1:452–468. https://doi.org/10.1038/s43018-020-0050-6

    Article  CAS  PubMed  Google Scholar 

  39. Robinson DR, Wu Y-M, Lonigro RJ, Vats P, Cobain E, Everett J, Cao X, Rabban E, Kumar-Sinha C, Raymond V, Schuetze S, Alva A, Siddiqui J, Chugh R, Worden F, Zalupski MM, Innis J, Mody RJ, Tomlins SA, Lucas D, Baker LH, Ramnath N, Schott AF, Hayes DF, Vijai J, Offit K, Stoffel EM, Roberts JS, Smith DC, Kunju LP, Talpaz M, Cieślik M, Chinnaiyan AM (2017) Integrative clinical genomics of metastatic cancer. Nature 548:297–303. https://doi.org/10.1038/nature23306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Krämer A, Green J, Pollard J Jr, Tugendreich S (2013) Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics 30:523–530. https://doi.org/10.1093/bioinformatics/btt703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Qin Q, Fan J, Zheng R, Wan C, Mei S, Wu Q, Sun H, Brown M, Zhang J, Meyer CA, Liu XS (2020) Lisa: inferring transcriptional regulators through integrative modeling of public chromatin accessibility and ChIP-seq data. Genome Biol 21:32. https://doi.org/10.1186/s13059-020-1934-6

    Article  PubMed  PubMed Central  Google Scholar 

  42. Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q, Li B, Liu XS (2020) TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res 48:W509-w514. https://doi.org/10.1093/nar/gkaa407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Aran D, Hu Z, Butte AJ (2017) xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol 18:220. https://doi.org/10.1186/s13059-017-1349-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hänzelmann S, Castelo R, Guinney J (2013) GSVA: gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformatics 14:7. https://doi.org/10.1186/1471-2105-14-7

    Article  PubMed  PubMed Central  Google Scholar 

  45. Udden SN, Wang Q, Kumar S, Malladi VS, Wu SY, Wei S, Posner BA, Geboers S, Williams NS, Liu Y, Sharma JK, Mani RS, Malladi S, Parra K, Hofstad M, Raj GV, Larios JM, Jagsi R, Wicha MS, Park BH, Gupta GP, Chinnaiyan AM, Chiang CM, Alluri PG (2022) Targeting ESR1 mutation-induced transcriptional addiction in breast cancer with BET inhibition. JCI Insight 7:e151851. https://doi.org/10.1172/jci.insight.151851

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wu Y, Li Z, Wedn AM, Casey AN, Brown D, Rao SV, Omarjee S, Hooda J, Carroll JS, Gertz J, Atkinson JM, Lee AV, Oesterreich S (2023) FOXA1 reprogramming dictates retinoid X receptor response in ESR1-mutant breast cancer. Mol Cancer Res 21:591–604. https://doi.org/10.1158/1541-7786.Mcr-22-0516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li Z, McGinn O, Wu Y, Bahreini A, Priedigkeit NM, Ding K, Onkar S, Lampenfeld C, Sartorius CA, Miller L, Rosenzweig M, Cohen O, Wagle N, Richer JK, Muller WJ, Buluwela L, Ali S, Bruno TC, Vignali DAA, Fang Y, Zhu L, Tseng GC, Gertz J, Atkinson JM, Lee AV, Oesterreich S (2022) ESR1 mutant breast cancers show elevated basal cytokeratins and immune activation. Nat Commun 13:2011. https://doi.org/10.1038/s41467-022-29498-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Williams MM, Spoelstra NS, Arnesen S, O’Neill KI, Christenson JL, Reese J, Torkko KC, Goodspeed A, Rosas E, Hanamura T, Sams SB, Li Z, Oesterreich S, Riggins RB, Jacobsen BM, Elias A, Gertz J, Richer JK (2021) Steroid hormone receptor and infiltrating immune cell status reveals therapeutic vulnerabilities of ESR1-mutant breast cancer. Cancer Res 81:732–746. https://doi.org/10.1158/0008-5472.Can-20-1200

    Article  CAS  PubMed  Google Scholar 

  49. Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P (2015) The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst 1:417–425. https://doi.org/10.1016/j.cels.2015.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cantisani V, Grazhdani H, Fioravanti C, Rosignuolo M, Calliada F, Messineo D, Bernieri MG, Redler A, Catalano C, D’Ambrosio F (2014) Liver metastases: contrast-enhanced ultrasound compared with computed tomography and magnetic resonance. World J Gastroenterol 20:9998–10007. https://doi.org/10.3748/wjg.v20.i29.9998

    Article  PubMed  PubMed Central  Google Scholar 

  51. Yates LR, Knappskog S, Wedge D, Farmery JHR, Gonzalez S, Martincorena I, Alexandrov LB, Van Loo P, Haugland HK, Lilleng PK, Gundem G, Gerstung M, Pappaemmanuil E, Gazinska P, Bhosle SG, Jones D, Raine K, Mudie L, Latimer C, Sawyer E, Desmedt C, Sotiriou C, Stratton MR, Sieuwerts AM, Lynch AG, Martens JW, Richardson AL, Tutt A, Lønning PE, Campbell PJ (2017) Genomic evolution of breast cancer metastasis and relapse. Cancer Cell 32:169-184.e167. https://doi.org/10.1016/j.ccell.2017.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhuang X, Zhang H, Li X, Li X, Cong M, Peng F, Yu J, Zhang X, Yang Q, Hu G (2017) Differential effects on lung and bone metastasis of breast cancer by Wnt signalling inhibitor DKK1. Nat Cell Biol 19:1274–1285. https://doi.org/10.1038/ncb3613

    Article  CAS  PubMed  Google Scholar 

  53. Bergers G, Fendt SM (2021) The metabolism of cancer cells during metastasis. Nat Rev Cancer 21:162–180. https://doi.org/10.1038/s41568-020-00320-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tabariès S, Dong Z, Annis MG, Omeroglu A, Pepin F, Ouellet V, Russo C, Hassanain M, Metrakos P, Diaz Z, Basik M, Bertos N, Park M, Guettier C, Adam R, Hallett M, Siegel PM (2011) Claudin-2 is selectively enriched in and promotes the formation of breast cancer liver metastases through engagement of integrin complexes. Oncogene 30:1318–1328. https://doi.org/10.1038/onc.2010.518

    Article  CAS  PubMed  Google Scholar 

  55. Leoni V, Gatta V, Palladini A, Nicoletti G, Ranieri D, Dall’Ora M, Grosso V, Rossi M, Alviano F, Bonsi L, Nanni P, Lollini PL, Campadelli-Fiume G (2015) Systemic delivery of HER2-retargeted oncolytic-HSV by mesenchymal stromal cells protects from lung and brain metastases. Oncotarget 6:34774–34787. https://doi.org/10.18632/oncotarget.5793

    Article  PubMed  PubMed Central  Google Scholar 

  56. Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, Molina H, Kohsaka S, Di Giannatale A, Ceder S, Singh S, Williams C, Soplop N, Uryu K, Pharmer L, King T, Bojmar L, Davies AE, Ararso Y, Zhang T, Zhang H, Hernandez J, Weiss JM, Dumont-Cole VD, Kramer K, Wexler LH, Narendran A, Schwartz GK, Healey JH, Sandstrom P, Labori KJ, Kure EH, Grandgenett PM, Hollingsworth MA, de Sousa M, Kaur S, Jain M, Mallya K, Batra SK, Jarnagin WR, Brady MS, Fodstad O, Muller V, Pantel K, Minn AJ, Bissell MJ, Garcia BA, Kang Y, Rajasekhar VK, Ghajar CM, Matei I, Peinado H, Bromberg J, Lyden D (2015) Tumour exosome integrins determine organotropic metastasis. Nature 527:329–335. https://doi.org/10.1038/nature15756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rocque GB, Gilbert A, Williams CP, Kenzik KM, Nakhmani A, Kandhare PG, Bhatia S, Burkard ME, Azuero A (2020) Prior treatment time affects survival outcomes in metastatic breast cancer. JCO Clin Cancer Informatics 4:500–513. https://doi.org/10.1200/cci.20.00008

    Article  Google Scholar 

  58. Wang R, Zhu Y, Liu X, Liao X, He J, Niu L (2019) The clinicopathological features and survival outcomes of patients with different metastatic sites in stage IV breast cancer. BMC Cancer 19:1091. https://doi.org/10.1186/s12885-019-6311-z

    Article  PubMed  PubMed Central  Google Scholar 

  59. Conger AK, Martin EC, Yan TJ, Rhodes LV, Hoang VT, La J, Anbalagan M, Burks HE, Rowan BG, Nephew KP, Collins-Burow BM, Burow ME (2016) Argonaute 2 expression correlates with a luminal B breast cancer subtype and induces estrogen receptor alpha isoform variation. Noncoding RNA 2(3):8. https://doi.org/10.3390/ncrna2030008

    Article  PubMed  PubMed Central  Google Scholar 

  60. Casey MC, Prakash A, Holian E, McGuire A, Kalinina O, Shalaby A, Curran C, Webber M, Callagy G, Bourke E, Kerin MJ, Brown JA (2019) Quantifying Argonaute 2 (Ago2) expression to stratify breast cancer. BMC Cancer 19:712. https://doi.org/10.1186/s12885-019-5884-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tilley AM, Howard CM, Sridharan S, Subramaniyan B, Bearss NR, Alkhalili S, Raman D (2020) The CXCR4-dependent LASP1-Ago2 interaction in triple-negative breast cancer. Cancers 12:2455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fujishita T, Kojima Y, Kajino-Sakamoto R, Mishiro-Sato E, Shimizu Y, Hosoda W, Yamaguchi R, Taketo MM, Aoki M (2022) The cAMP/PKA/CREB and TGFβ/SMAD4 pathways regulate stemness and metastatic potential in colorectal cancer cells. Cancer Res 82:4179–4190. https://doi.org/10.1158/0008-5472.Can-22-1369

    Article  CAS  PubMed  Google Scholar 

  63. Zhang H, Kong Q, Wang J, Jiang Y, Hua H (2020) Complex roles of cAMP–PKA–CREB signaling in cancer. Exp Hematol Oncol 9:32. https://doi.org/10.1186/s40164-020-00191-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhu L, Narloch JL, Onkar S, Joy M, Broadwater G, Luedke C, Hall A, Kim R, Pogue-Geile K, Sammons S, Nayyar N, Chukwueke U, Brastianos PK, Anders CK, Soloff AC, Vignali DAA, Tseng GC, Emens LA, Lucas PC, Blackwell KL, Oesterreich S, Lee AV (2019) Metastatic breast cancers have reduced immune cell recruitment but harbor increased macrophages relative to their matched primary tumors. J Immunother Cancer 7:265. https://doi.org/10.1186/s40425-019-0755-1

    Article  PubMed  PubMed Central  Google Scholar 

  65. Garcia-Recio S, Hinoue T, Wheeler GL, Kelly BJ, Garrido-Castro AC, Pascual T, De Cubas AA, Xia Y, Felsheim BM, McClure MB, Rajkovic A, Karaesmen E, Smith MA, Fan C, Ericsson PIG, Sanders ME, Creighton CJ, Bowen J, Leraas K, Burns RT, Coppens S, Wheless A, Rezk S, Garrett AL, Parker JS, Foy KK, Shen H, Park BH, Krop I, Anders C, Gastier-Foster J, Rimawi MF, Nanda R, Lin NU, Isaacs C, Marcom PK, Storniolo AM, Couch FJ, Chandran U, Davis M, Silverstein J, Ropelewski A, Liu MC, Hilsenbeck SG, Norton L, Richardson AL, Symmans WF, Wolff AC, Davidson NE, Carey LA, Lee AV, Balko JM, Hoadley KA, Laird PW, Mardis ER, King TA, Perou CM (2023) Multiomics in primary and metastatic breast tumors from the AURORA US network finds microenvironment and epigenetic drivers of metastasis. Nat Cancer 4:128–147. https://doi.org/10.1038/s43018-022-00491-x

    Article  CAS  PubMed  Google Scholar 

  66. Liu C, Mohan SC, Wei J, Seki E, Liu M, Basho R, Giuliano AE, Zhao Y, Cui X (2022) Breast cancer liver metastasis: pathogenesis and clinical implications. Front Oncol 12:1043771. https://doi.org/10.3389/fonc.2022.1043771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang Y, Chen J, Yang L, Li J, Wu W, Huang M, Lin L, Su S (2019) Tumor-contacted neutrophils promote metastasis by a CD90-TIMP-1 juxtacrine-paracrine loop. Clin Cancer Res 25:1957–1969. https://doi.org/10.1158/1078-0432.Ccr-18-2544

    Article  CAS  PubMed  Google Scholar 

  68. Hsu BE, Tabariès S, Johnson RM, Andrzejewski S, Senecal J, Lehuédé C, Annis MG, Ma EH, Völs S, Ramsay L, Froment R, Monast A, Watson IR, Granot Z, Jones RG, St-Pierre J, Siegel PM (2019) Immature low-density neutrophils exhibit metabolic flexibility that facilitates breast cancer liver metastasis. Cell Rep 27:3902-3915.e3906. https://doi.org/10.1016/j.celrep.2019.05.091

    Article  CAS  PubMed  Google Scholar 

  69. Peng Z, Liu C, Victor AR, Cao DY, Veiras LC, Bernstein EA, Khan Z, Giani JF, Cui X, Bernstein KE, Okwan-Duodu D (2021) Tumors exploit CXCR4(hi)CD62L(lo) aged neutrophils to facilitate metastatic spread. Oncoimmunology 10:1870811. https://doi.org/10.1080/2162402x.2020.1870811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Katzenellenbogen JA, Mayne CG, Katzenellenbogen BS, Greene GL, Chandarlapaty S (2018) Structural underpinnings of oestrogen receptor mutations in endocrine therapy resistance. Nat Rev Cancer 18:377–388. https://doi.org/10.1038/s41568-018-0001-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nayar U, Cohen O, Kapstad C, Cuoco MS, Waks AG, Wander SA, Painter C, Freeman S, Persky NS, Marini L, Helvie K, Oliver N, Rozenblatt-Rosen O, Ma CX, Regev A, Winer EP, Lin NU, Wagle N (2019) Acquired HER2 mutations in ER(+) metastatic breast cancer confer resistance to estrogen receptor-directed therapies. Nat Genet 51:207–216. https://doi.org/10.1038/s41588-018-0287-5

    Article  CAS  PubMed  Google Scholar 

  72. Wander SA, Cohen O, Gong X, Johnson GN, Buendia-Buendia JE, Lloyd MR, Kim D, Luo F, Mao P, Helvie K, Kowalski KJ, Nayar U, Waks AG, Parsons SH, Martinez R, Litchfield LM, Ye XS, Yu C, Jansen VM, Stille JR, Smith PS, Oakley GJ, Chu QS, Batist G, Hughes ME, Kremer JD, Garraway LA, Winer EP, Tolaney SM, Lin NU, Buchanan SG, Wagle N (2020) The genomic landscape of intrinsic and acquired resistance to cyclin-dependent kinase 4/6 inhibitors in patients with hormone receptor-positive metastatic breast cancer. Cancer Discov 10:1174–1193. https://doi.org/10.1158/2159-8290.Cd-19-1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mao P, Cohen O, Kowalski KJ, Kusiel JG, Buendia-Buendia JE, Cuoco MS, Exman P, Wander SA, Waks AG, Nayar U, Chung J, Freeman S, Rozenblatt-Rosen O, Miller VA, Piccioni F, Root DE, Regev A, Winer EP, Lin NU, Wagle N (2020) Acquired FGFR and FGF alterations confer resistance to estrogen receptor (ER) targeted therapy in ER(+) metastatic breast cancer. Clin Cancer Res 26:5974–5989. https://doi.org/10.1158/1078-0432.Ccr-19-3958

    Article  CAS  PubMed  Google Scholar 

  74. Waks AG, Cohen O, Kochupurakkal B, Kim D, Dunn CE, Buendia Buendia J, Wander S, Helvie K, Lloyd MR, Marini L, Hughes ME, Freeman SS, Ivy SP, Geradts J, Isakoff S, LoRusso P, Adalsteinsson VA, Tolaney SM, Matulonis U, Krop IE, D’Andrea AD, Winer EP, Lin NU, Shapiro GI, Wagle N (2020) Reversion and non-reversion mechanisms of resistance to PARP inhibitor or platinum chemotherapy in BRCA1/2-mutant metastatic breast cancer. Ann Oncol 31:590–598. https://doi.org/10.1016/j.annonc.2020.02.008

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Yang Wu was a former visiting research scholar at the University of Pittsburgh School of Medicine supported by funds from The China Scholarship Council and Tsinghua University.

Funding

This work was supported by the Initiative Scientific Research Program, Institute for Intelligent Healthcare, Tsinghua University (No. 12017C1024), and in part supported by an award from The Breasties (SO).

Author information

Authors and Affiliations

Authors

Contributions

YW contributed to conceptualization, data curation, software, formal analysis, validation, investigation, visualization, writing of the original draft, and writing, reviewing, and editing of the manuscript. ZL contributed to conceptualization, data curation, formal analysis, and writing, reviewing, and editing of the manuscript. AVL contributed to conceptualization, resources, investigation, writing of the original draft, and writing, reviewing, and editing of the manuscript. SO contributed to conceptualization, resources, investigation, writing of the original draft, and writing, reviewing, and editing of the manuscript. BL contributed to conceptualization, supervision, funding acquisition, investigation, writing of the original draft, writing, reviewing, and editing of the manuscript, and project administration.

Corresponding author

Correspondence to Bin Luo.

Ethics declarations

Conflict of interest

All authors declare no conflicts of interest.

Consent for publication

All authors agree to publish the article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 893 KB)

Supplementary file2 (XLSX 1816 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Li, Z., Lee, A.V. et al. Liver tropism of ER mutant breast cancer is characterized by unique molecular changes and immune infiltration. Breast Cancer Res Treat 205, 371–386 (2024). https://doi.org/10.1007/s10549-024-07255-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-024-07255-4

Keywords