Skip to main content

Advertisement

Log in

Breast cancer vaccines for treatment and prevention

  • Review
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Breast cancer is immunogenic and a variety of vaccines have been designed to boost immunity directed against the disease. The components of a breast cancer vaccine, the antigen, the delivery system, and the adjuvant, can have a significant impact on vaccine immunogenicity. There have been numerous immunogenic proteins identified in all subtypes of breast cancer. The majority of these antigens are weakly immunogenic nonmutated tumor-associated proteins. Mutated proteins and neoantigen epitopes are found only in a small minority of patients and are enriched in the triple negative subtype. Several vaccines have advanced to large randomized Phase II or Phase III clinical trials. None of these trials met their primary endpoint of either progression-free or overall survival. Despite these set-backs investigators have learned important lessons regarding the clinical application of breast cancer vaccines from the type of immune response needed for tumor eradication, Type I T-cell immunity, to the patient populations most likely to benefit from vaccination. Many therapeutic breast cancer vaccines are now being tested in combination with other forms of immune therapy or chemotherapy and radiation. Breast cancer vaccines as single agents are now studied in the context of the prevention of relapse or development of disease. Newer approaches are designing vaccines to prevent breast cancer by intercepting high-risk lesions such as ductal carcinoma in situ to limit the progression of these tumors to invasive cancer. There are also several efforts to develop vaccines for the primary prevention of breast cancer by targeting antigens expressed during breast cancer initiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed.

Code availability

Not applicable to this article as no code was generated.

References

  1. Goodell V, Waisman J, Salazar LG, de la Rosa C, Link J, Coveler AL, Childs JS, Fintak PA, Higgins DM, Disis ML (2008) Level of HER-2/neu protein expression in breast cancer may affect the development of endogenous HER-2/neu-specific immunity. Mol Cancer Ther 7:449–454. https://doi.org/10.1158/1535-7163.MCT-07-0386

    Article  CAS  PubMed  Google Scholar 

  2. Disis ML, Smith JW, Murphy AE, Chen W, Cheever MA (1994) In vitro generation of human cytolytic T-cells specific for peptides derived from the HER-2/neu protooncogene protein. Cancer Res 54:1071–1076

    CAS  PubMed  Google Scholar 

  3. Disis ML, Pupa SM, Gralow JR, Dittadi R, Menard S, Cheever MA (1997) High-titer HER-2/neu protein-specific antibody can be detected in patients with early-stage breast cancer. J Clin Oncol 15:3363–3367. https://doi.org/10.1200/JCO.1997.15.11.3363

    Article  CAS  PubMed  Google Scholar 

  4. Tabuchi Y, Shimoda M, Kagara N, Naoi Y, Tanei T, Shimomura A, Shimazu K, Kim SJ, Noguchi S (2016) Protective effect of naturally occurring anti-HER2 autoantibodies on breast cancer. Breast Cancer Res Treat 157:55–63. https://doi.org/10.1007/s10549-016-3801-4

    Article  CAS  PubMed  Google Scholar 

  5. Park KH, Gad E, Goodell V, Dang Y, Wild T, Higgins D, Fintak P, Childs J, Dela Rosa C, Disis ML (2008) Insulin-like growth factor-binding protein-2 is a target for the immunomodulation of breast cancer. Cancer Res 68:8400–8409. https://doi.org/10.1158/0008-5472.CAN-07-5891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cecil DL, Park KH, Gad E, Childs JS, Higgins DM, Plymate SR, Disis ML (2013) T-helper I immunity, specific for the breast cancer antigen insulin-like growth factor-I receptor (IGF-IR), is associated with increased adiposity. Breast Cancer Res Treat 139:657–665. https://doi.org/10.1007/s10549-013-2577-z

    Article  CAS  PubMed  Google Scholar 

  7. Cecil DL, Slota M, O’Meara MM, Curtis BC, Gad E, Dang Y, Herendeen D, Rastetter L, Disis ML (2017) Immunization against HIF-1alpha inhibits the growth of basal mammary tumors and targets mammary stem cells in vivo. Clin Cancer Res 23:3396–3404. https://doi.org/10.1158/1078-0432.CCR-16-1678

    Article  CAS  PubMed  Google Scholar 

  8. Kao H, Marto JA, Hoffmann TK, Shabanowitz J, Finkelstein SD, Whiteside TL, Hunt DF, Finn OJ (2001) Identification of cyclin B1 as a shared human epithelial tumor-associated antigen recognized by T cells. J Exp Med 194:1313–1323. https://doi.org/10.1084/jem.194.9.1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Beckwith DM, Cudic M (2020) Tumor-associated O-glycans of MUC1: Carriers of the glyco-code and targets for cancer vaccine design. Semin Immunol 47:101389. https://doi.org/10.1016/j.smim.2020.101389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Guckel B, Rentzsch C, Nastke MD, Marme A, Gruber I, Stevanovic S, Kayser S, Wallwiener D (2006) Pre-existing T-cell immunity against mucin-1 in breast cancer patients and healthy volunteers. J Cancer Res Clin Oncol 132:265–274. https://doi.org/10.1007/s00432-005-0064-6

    Article  CAS  PubMed  Google Scholar 

  11. Pandey JP, Namboodiri AM, Wolf B, Iwasaki M, Kasuga Y, Hamada GS, Tsugane S (2018) Endogenous antibody responses to mucin 1 in a large multiethnic cohort of patients with breast cancer and healthy controls: Role of immunoglobulin and Fcgamma receptor genes. Immunobiology 223:178–182. https://doi.org/10.1016/j.imbio.2017.10.028

    Article  CAS  PubMed  Google Scholar 

  12. Fremd C, Stefanovic S, Beckhove P, Pritsch M, Lim H, Wallwiener M, Heil J, Golatta M, Rom J, Sohn C, Schneeweiss A, Schuetz F, Domschke C (2016) Mucin 1-specific B cell immune responses and their impact on overall survival in breast cancer patients. Oncoimmunology 5:e1057387. https://doi.org/10.1080/2162402X.2015.1057387

    Article  CAS  PubMed  Google Scholar 

  13. Engelhard VH, Obeng RC, Cummings KL, Petroni GR, Ambakhutwala AL, Chianese-Bullock KA, Smith KT, Lulu A, Varhegyi N, Smolkin ME, Myers P, Mahoney KE, Shabanowitz J, Buettner N, Hall EH, Haden K, Cobbold M, Hunt DF, Weiss G, Gaughan E, Slingluff CL Jr (2020) MHC-restricted phosphopeptide antigens: preclinical validation and first-in-humans clinical trial in participants with high-risk melanoma. J Immunother Cancer. https://doi.org/10.1136/jitc-2019-000262

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yuzhalin AE (2019) Citrullination in cancer. Cancer Res 79:1274–1284. https://doi.org/10.1158/0008-5472.CAN-18-2797

    Article  CAS  PubMed  Google Scholar 

  15. Katayama H, Boldt C, Ladd JJ, Johnson MM, Chao T, Capello M, Suo J, Mao J, Manson JE, Prentice R, Esteva F, Wang H, Disis ML, Hanash S (2015) An autoimmune response signature associated with the development of triple-negative breast cancer reflects disease pathogenesis. Cancer Res 75:3246–3254. https://doi.org/10.1158/0008-5472.CAN-15-0248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mei P, Freitag CE, Wei L, Zhang Y, Parwani AV, Li Z (2020) High tumor mutation burden is associated with DNA damage repair gene mutation in breast carcinomas. Diagn Pathol 15:50. https://doi.org/10.1186/s13000-020-00971-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ren Y, Cherukuri Y, Wickland DP, Sarangi V, Tian S, Carter JM, Mansfield AS, Block MS, Sherman ME, Knutson KL, Lin Y, Asmann YW (2020) HLA class-I and class-II restricted neoantigen loads predict overall survival in breast cancer. Oncoimmunology 9:1744947. https://doi.org/10.1080/2162402X.2020.1744947

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zacharakis N, Chinnasamy H, Black M, Xu H, Lu YC, Zheng Z, Pasetto A, Langhan M, Shelton T, Prickett T, Gartner J, Jia L, Trebska-McGowan K, Somerville RP, Robbins PF, Rosenberg SA, Goff SL, Feldman SA (2018) Immune recognition of somatic mutations leading to complete durable regression in metastatic breast cancer. Nat Med 24:724–730. https://doi.org/10.1038/s41591-018-0040-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sherafat E, Force J, Mandoiu II (2020) Semi-supervised learning for somatic variant calling and peptide identification in personalized cancer immunotherapy. BMC Bioinformatics 21:498. https://doi.org/10.1186/s12859-020-03813-x

    Article  PubMed  PubMed Central  Google Scholar 

  20. Fritsch EF, Burkhardt UE, Hacohen N, Wu CJ (2020) Personal neoantigen cancer vaccines: A road not fully paved. Cancer Immunol Res 8:1465–1469. https://doi.org/10.1158/2326-6066.CIR-20-0526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lopes A, Vandermeulen G, Preat V (2019) Cancer DNA vaccines: current preclinical and clinical developments and future perspectives. J Exp Clin Cancer Res 38:146. https://doi.org/10.1186/s13046-019-1154-7

    Article  PubMed  PubMed Central  Google Scholar 

  22. Schoof DD, Smith JW 2nd, Disis ML, Brant-Zawadski P, Wood W, Doran T, Johnson E, Urba WJ (1998) Immunization of metastatic breast cancer patients with CD80-modified breast cancer cells and GM-CSF. Adv Exp Med Biol 451:511–518. https://doi.org/10.1007/978-1-4615-5357-1_79

    Article  CAS  PubMed  Google Scholar 

  23. Bozeman EN, He S, Shafizadeh Y, Selvaraj P (2016) Therapeutic efficacy of PD-L1 blockade in a breast cancer model is enhanced by cellular vaccines expressing B7–1 and glycolipid-anchored IL-12. Hum Vaccin Immunother 12:421–430. https://doi.org/10.1080/21645515.2015.1076953

    Article  PubMed  Google Scholar 

  24. Rainone V, Martelli C, Ottobrini L, Biasin M, Texido G, Degrassi A, Borelli M, Lucignani G, Trabattoni D, Clerici M (2016) Immunological characterization of whole tumour lysate-loaded dendritic cells for cancer immunotherapy. PLoS ONE 11:e0146622. https://doi.org/10.1371/journal.pone.0146622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ebert LM, MacRaild SE, Zanker D, Davis ID, Cebon J, Chen W (2012) A cancer vaccine induces expansion of NY-ESO-1-specific regulatory T cells in patients with advanced melanoma. PLoS ONE 7:e48424. https://doi.org/10.1371/journal.pone.0048424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Disis ML (2010) Immune regulation of cancer. J Clin Oncol 28:4531–4538. https://doi.org/10.1200/JCO.2009.27.2146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Watt WC, Cecil DL, Disis ML (2017) Selection of epitopes from self-antigens for eliciting Th2 or Th1 activity in the treatment of autoimmune disease or cancer. Semin Immunopathol 39:245–253. https://doi.org/10.1007/s00281-016-0596-7

    Article  CAS  PubMed  Google Scholar 

  28. Cecil DL, Holt GE, Park KH, Gad E, Rastetter L, Childs J, Higgins D, Disis ML (2014) Elimination of IL-10-inducing T-helper epitopes from an IGFBP-2 vaccine ensures potent antitumor activity. Cancer Res 74:2710–2718. https://doi.org/10.1158/0008-5472.CAN-13-3286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gebre MS, Brito LA, Tostanoski LH, Edwards DK, Carfi A, Barouch DH (2021) Novel approaches for vaccine development. Cell 184:1589–1603. https://doi.org/10.1016/j.cell.2021.02.030

    Article  CAS  PubMed  Google Scholar 

  30. Rahma OE, Gammoh E, Simon R, Khleif SN (2014) Is the “3+3” dose escalation phase 1 clinical trial design suitable for therapeutic cancer vaccine development? A recommendation for alternative design. Clin Cancer Res. https://doi.org/10.1158/1078-0432.CCR-13-2671

    Article  PubMed  PubMed Central  Google Scholar 

  31. Guevara ML, Persano F, Persano S (2020) Advances in lipid nanoparticles for mRNA-based cancer immunotherapy. Front Chem 8:589959. https://doi.org/10.3389/fchem.2020.589959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cuzzubbo S, Mangsbo S, Nagarajan D, Habra K, Pockley AG, McArdle SEB (2020) Cancer vaccines: Adjuvant potency, importance of age, lifestyle, and treatments. Front Immunol 11:615240. https://doi.org/10.3389/fimmu.2020.615240

    Article  CAS  PubMed  Google Scholar 

  33. Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, Redfern CH, Ferrari AC, Dreicer R, Sims RB, Xu Y, Frohlich MW, Schellhammer PF (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363:411–422. https://doi.org/10.1056/NEJMoa1001294

    Article  CAS  PubMed  Google Scholar 

  34. Knutson KL, Schiffman K, Disis ML (2001) Immunization with a HER-2/neu helper peptide vaccine generates HER-2/neu CD8 T-cell immunity in cancer patients. J Clin Invest 107:477–484. https://doi.org/10.1172/JCI11752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Disis ML, Rinn K, Knutson KL, Davis D, Caron D, dela Rosa C, Schiffman K, (2002) Flt3 ligand as a vaccine adjuvant in association with HER-2/neu peptide-based vaccines in patients with HER-2/neu-overexpressing cancers. Blood 99:2845–2850. https://doi.org/10.1182/blood.v99.8.2845

    Article  CAS  PubMed  Google Scholar 

  36. Engel AL, Sun GC, Gad E, Rastetter LR, Strobe K, Yang Y, Dang Y, Disis ML, Lu H (2013) Protein-bound polysaccharide activates dendritic cells and enhances OVA-specific T cell response as vaccine adjuvant. Immunobiology 218:1468–1476. https://doi.org/10.1016/j.imbio.2013.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dang Y, Wagner WM, Gad E, Rastetter L, Berger CM, Holt GE, Disis ML (2012) Dendritic cell-activating vaccine adjuvants differ in the ability to elicit antitumor immunity due to an adjuvant-specific induction of immunosuppressive cells. Clin Cancer Res 18:3122–3131. https://doi.org/10.1158/1078-0432.CCR-12-0113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Barati N, Nikpoor AR, Razazan A, Mosaffa F, Badiee A, Arab A, Gholizadeh Z, Behravan J, Jaafari MR (2017) Nanoliposomes carrying HER2/neu-derived peptide AE36 with CpG-ODN exhibit therapeutic and prophylactic activities in a mice TUBO model of breast cancer. Immunol Lett 190:108–117. https://doi.org/10.1016/j.imlet.2017.07.009

    Article  CAS  PubMed  Google Scholar 

  39. Glaffig M, Stergiou N, Schmitt E, Kunz H (2017) Immunogenicity of a fully synthetic MUC1 glycopeptide antitumor vaccine enhanced by Poly(I:C) as a TLR3-activating adjuvant. ChemMedChem 12:722–727. https://doi.org/10.1002/cmdc.201700254

    Article  CAS  PubMed  Google Scholar 

  40. Lu H, Yang Y, Gad E, Wenner CA, Chang A, Larson ER, Dang Y, Martzen M, Standish LJ, Disis ML (2011) Polysaccharide krestin is a novel TLR2 agonist that mediates inhibition of tumor growth via stimulation of CD8 T cells and NK cells. Clin Cancer Res 17:67–76. https://doi.org/10.1158/1078-0432.CCR-10-1763

    Article  CAS  PubMed  Google Scholar 

  41. Reed SG, Tomai M, Gale MJ Jr (2020) New horizons in adjuvants for vaccine development. Curr Opin Immunol 65:97–101. https://doi.org/10.1016/j.coi.2020.08.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Miles D, Roche H, Martin M, Perren TJ, Cameron DA, Glaspy J, Dodwell D, Parker J, Mayordomo J, Tres A, Murray JL, Ibrahim NK (2011) Phase III multicenter clinical trial of the sialyl-TN (STn)-keyhole limpet hemocyanin (KLH) vaccine for metastatic breast cancer. Oncologist 16:1092–1100. https://doi.org/10.1634/theoncologist.2010-0307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Le DT, Jaffee EM (2012) Regulatory T-cell modulation using cyclophosphamide in vaccine approaches: a current perspective. Cancer Res 72:3439–3444. https://doi.org/10.1158/0008-5472.CAN-11-3912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Huang CS, Yu AL, Tseng LM, Chow LWC, Hou MF, Hurvitz SA, Schwab RB, J LM, Chang HK, Chang HT, Chen SC, Kim SB, Hung JT, Ueng SH, Lee SH, Chen CC, Rugo HS, (2020) Globo H-KLH vaccine adagloxad simolenin (OBI-822)/OBI-821 in patients with metastatic breast cancer: phase II randomized, placebo-controlled study. J Immunother Cancer. https://doi.org/10.1136/jitc-2019-000342

    Article  PubMed  PubMed Central  Google Scholar 

  45. Mittendorf EA, Lu B, Melisko M, Price Hiller J, Bondarenko I, Brunt AM, Sergii G, Petrakova K, Peoples GE (2019) Efficacy and safety analysis of nelipepimut-S vaccine to prevent breast cancer recurrence: A randomized, multicenter, Phase III clinical trial. Clin Cancer Res 25:4248–4254. https://doi.org/10.1158/1078-0432.CCR-18-2867

    Article  CAS  PubMed  Google Scholar 

  46. Benavides LC, Gates JD, Carmichael MG, Patil R, Holmes JP, Hueman MT, Mittendorf EA, Craig D, Stojadinovic A, Ponniah S, Peoples GE (2009) The impact of HER2/neu expression level on response to the E75 vaccine: from U.S. Military Cancer Institute Clinical Trials Group Study I-01 and I-02. Clin Cancer Res 15:2895–2904. https://doi.org/10.1158/1078-0432.CCR-08-1126

    Article  CAS  PubMed  Google Scholar 

  47. Singer CF, Pfeiler G, Hubalek M, Bartsch R, Stoger H, Pichler A, Petru E, Bjelic-Radisic V, Greil R, Rudas M, Maria Tea MK, Wette V, Petzer AL, Sevelda P, Egle D, Dubsky PC, Filipits M, Fitzal F, Exner R, Jakesz R, Balic M, Tinchon C, Bago-Horvath Z, Frantal S, Gnant M, Austrian B, Colorectal Cancer Study G 2020 Efficacy and safety of the therapeutic cancer vaccine tecemotide (L-BLP25) in early breast cancer: Results from a prospective, randomised, neoadjuvant phase II study (ABCSG 34) Eur J Cancer 132 43 52 https://doi.org/10.1016/j.ejca.2020.03.018

  48. Jin KT, Lan HR, Chen XY, Wang SB, Ying XJ, Lin Y, Mou XZ (2019) Recent advances in carbohydrate-based cancer vaccines. Biotechnol Lett 41:641–650. https://doi.org/10.1007/s10529-019-02675-5

    Article  CAS  PubMed  Google Scholar 

  49. Giraldo NA, Becht E, Remark R, Damotte D, Sautes-Fridman C, Fridman WH (2014) The immune contexture of primary and metastatic human tumours. Curr Opin Immunol 27:8–15. https://doi.org/10.1016/j.coi.2014.01.001

    Article  CAS  PubMed  Google Scholar 

  50. Liu D, Vadgama J, Wu Y (2021) Basal-like breast cancer with low TGFbeta and high TNFalpha pathway activity is rich in activated memory CD4 T cells and has a good prognosis. Int J Biol Sci 17:670–682. https://doi.org/10.7150/ijbs.56128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Byrne A, Savas P, Sant S, Li R, Virassamy B, Luen SJ, Beavis PA, Mackay LK, Neeson PJ, Loi S (2020) Tissue-resident memory T cells in breast cancer control and immunotherapy responses. Nat Rev Clin Oncol 17:341–348. https://doi.org/10.1038/s41571-020-0333-y

    Article  PubMed  Google Scholar 

  52. Bedoui S, Heath WR, Mueller SN (2016) CD4(+) T-cell help amplifies innate signals for primary CD8(+) T-cell immunity. Immunol Rev 272:52–64. https://doi.org/10.1111/imr.12426

    Article  CAS  PubMed  Google Scholar 

  53. Knutson KL, Schiffman K, Cheever MA, Disis ML (2002) Immunization of cancer patients with a HER-2/neu, HLA-A2 peptide, p 369–377, results in short-lived peptide-specific immunity. Clin Cancer Res 8:1014–1018

    CAS  PubMed  Google Scholar 

  54. Disis ML, Gad E, Herendeen DR, Lai VP, Park KH, Cecil DL, O’Meara MM, Treuting PM, Lubet RA (2013) A Multiantigen vaccine targeting Neu, IGFBP-2, and IGF-IR prevents tumor progression in mice with preinvasive breast disease. Cancer Prev Res (Phila) 6:1273–1282. https://doi.org/10.1158/1940-6207.CAPR-13-0182

    Article  CAS  Google Scholar 

  55. Kondo S, Shimizu T, Koyama T, Sato J, Iwasa S, Yonemori K, Fujiwara Y, Shimomura A, Kitano S, Tamura K, Yamamoto N (2020) First-in-human study of the cancer peptide vaccine TAS0313 in patients with advanced solid tumors. Cancer Sci. https://doi.org/10.1111/cas.14765

    Article  PubMed  PubMed Central  Google Scholar 

  56. Gatti-Mays ME, Gameiro SR, Ozawa Y, Knudson KM, Hicks KC, Palena C, Cordes LM, Steinberg SM, Francis D, Karzai F, Lipkowitz S, Donahue RN, Jochems C, Schlom J, Gulley JL (2020) Improving the odds in advanced breast cancer with combination immunotherapy: Stepwise addition of vaccine, immune checkpoint inhibitor, chemotherapy, and HDAC inhibitor in advanced stage breast cancer. Front Oncol 10:581801. https://doi.org/10.3389/fonc.2020.581801

    Article  PubMed  Google Scholar 

  57. Cecil D, Park KH, Curtis B, Corulli L, Disis MN (2021) Type I T cells sensitize treatment refractory tumors to chemotherapy through inhibition of oncogenic signaling pathways. J Immunother Cancer. https://doi.org/10.1136/jitc-2021-002355

    Article  PubMed  PubMed Central  Google Scholar 

  58. Dafni U, Martin-Lluesma S, Balint K, Tsourti Z, Vervita K, Chenal J, Coukos G, Zaman K, Sarivalasis A, Kandalaft LE (2021) Efficacy of cancer vaccines in selected gynaecological breast and ovarian cancers: A 20-year systematic review and meta-analysis. Eur J Cancer 142:63–82. https://doi.org/10.1016/j.ejca.2020.10.014

    Article  CAS  PubMed  Google Scholar 

  59. Adams S, Gatti-Mays ME, Kalinsky K, Korde LA, Sharon E, Amiri-Kordestani L, Bear H, McArthur HL, Frank E, Perlmutter J, Page DB, Vincent B, Hayes JF, Gulley JL, Litton JK, Hortobagyi GN, Chia S, Krop I, White J, Sparano J, Disis ML, Mittendorf EA (2019) Current landscape of immunotherapy in breast cancer: A Review. JAMA Oncol. https://doi.org/10.1001/jamaoncol.2018.7147

    Article  PubMed  PubMed Central  Google Scholar 

  60. Troisi M, Andreano E, Sala C, Kabanova A, Rappuoli R (2020) Vaccines as remedy for antimicrobial resistance and emerging infections. Curr Opin Immunol 65:102–106. https://doi.org/10.1016/j.coi.2020.09.003

    Article  CAS  PubMed  Google Scholar 

  61. Marquez JP, Stanton SE, Disis ML (2015) The antigenic repertoire of premalignant and high-risk lesions. Cancer Prev Res (Phila) 8:266–270. https://doi.org/10.1158/1940-6207.CAPR-14-0314

    Article  CAS  Google Scholar 

  62. Miligy IM, Toss MS, Gorringe KL, Lee AHS, Ellis IO, Green AR, Rakha EA (2019) The clinical and biological significance of HER2 over-expression in breast ductal carcinoma in situ: a large study from a single institution. Br J Cancer 120:1075–1082. https://doi.org/10.1038/s41416-019-0436-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sharma A, Koldovsky U, Xu S, Mick R, Roses R, Fitzpatrick E, Weinstein S, Nisenbaum H, Levine BL, Fox K, Zhang P, Koski G, Czerniecki BJ (2012) HER-2 pulsed dendritic cell vaccine can eliminate HER-2 expression and impact ductal carcinoma in situ. Cancer 118:4354–4362. https://doi.org/10.1002/cncr.26734

    Article  CAS  PubMed  Google Scholar 

  64. Broussard EK, Kim R, Wiley JC, Marquez JP, Annis JE, Pritchard D, Disis ML (2013) Identification of putative immunologic targets for colon cancer prevention based on conserved gene upregulation from preinvasive to malignant lesions. Cancer Prev Res (Phila) 6:666–674. https://doi.org/10.1158/1940-6207.CAPR-12-0484

    Article  CAS  Google Scholar 

  65. Mao J, Ladd J, Gad E, Rastetter L, Johnson MM, Marzbani E, Childs JS, Lu H, Dang Y, Broussard E, Stanton SE, Hanash SM, Disis ML (2014) Mining the pre-diagnostic antibody repertoire of TgMMTV-neu mice to identify autoantibodies useful for the early detection of human breast cancer. J Transl Med 12:121. https://doi.org/10.1186/1479-5876-12-121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Khandekar D, Amara S, Tiriveedhi V (2019) Immunogenicity of tumor initiating stem cells: Potential applications in novel anticancer therapy. Front Oncol 9:315. https://doi.org/10.3389/fonc.2019.00315

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

MLD is supported by the Helen B. Slonaker Endowed Professor for Cancer Research.

Author information

Authors and Affiliations

Authors

Contributions

MLD had the idea for the article, performed the literature search and data analysis, and drafted the manuscript. DLC edited and formatted the manuscript.

Corresponding author

Correspondence to Mary L. Disis.

Ethics declarations

Conflict of interest

MLD: Grant support from Precigen, EMD Sorono, and Pfizer. Stockholder: Epithany. Inventor on patents held by the University of Washington.

Ethical approval

Not applicable to this article as no data were generated.

Consent to participate

Not applicable to this article as only published human studies were discussed.

Consent for publication

Not applicable to this article as only published human studies were discussed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Disis, M.L., Cecil, D.L. Breast cancer vaccines for treatment and prevention. Breast Cancer Res Treat 191, 481–489 (2022). https://doi.org/10.1007/s10549-021-06459-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-021-06459-2

Keywords